This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 3 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 4 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) | |
| 5 | 1 2 3 3 4 | syl13anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
| 6 | 2re | ⊢ 2 ∈ ℝ | |
| 7 | rexr | ⊢ ( 2 ∈ ℝ → 2 ∈ ℝ* ) | |
| 8 | xmul01 | ⊢ ( 2 ∈ ℝ* → ( 2 ·e 0 ) = 0 ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( 2 ·e 0 ) = 0 |
| 10 | xmet0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) | |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
| 12 | 9 11 | eqtr4id | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e 0 ) = ( 𝐵 𝐷 𝐵 ) ) |
| 13 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 14 | x2times | ⊢ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* → ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
| 16 | 5 12 15 | 3brtr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) |
| 17 | 0xr | ⊢ 0 ∈ ℝ* | |
| 18 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 19 | 18 | a1i | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 2 ∈ ℝ+ ) |
| 20 | xlemul2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ 2 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) ) | |
| 21 | 17 13 19 20 | mp3an2i | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) ) |
| 22 | 16 21 | mpbird | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |