This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrcl | ⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | ⊢ < Or ℝ* | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
| 3 | xrinfmss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) | |
| 4 | 2 3 | infcl | ⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |