This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | ||
| Assertion | pserdvlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ℂ ∈ { ℝ , ℂ } ) |
| 11 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 12 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑘 ) ∈ Fin ) | |
| 13 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 14 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 15 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℂ ) | |
| 16 | 1 2 3 4 5 6 | pserdvlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |
| 17 | 16 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
| 18 | 17 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 19 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) | |
| 20 | 14 15 18 19 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
| 21 | 7 20 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ℂ ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ⊆ ℂ ) |
| 23 | 22 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 24 | 1 13 23 | psergf | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 25 | elfznn0 | ⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℕ0 ) | |
| 26 | ffvelcdm | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) | |
| 27 | 24 25 26 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
| 28 | 12 27 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
| 29 | 28 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ ) |
| 30 | cnex | ⊢ ℂ ∈ V | |
| 31 | 7 | ovexi | ⊢ 𝐵 ∈ V |
| 32 | 30 31 | elmap | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ ) |
| 33 | 29 32 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
| 34 | 33 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
| 35 | 1 2 3 4 5 6 | psercn | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| 36 | cncff | ⊢ ( 𝐹 ∈ ( 𝑆 –cn→ ℂ ) → 𝐹 : 𝑆 ⟶ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 39 | 1 2 3 4 5 16 | psercnlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ∧ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) ) |
| 40 | 39 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ) |
| 41 | 7 40 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ) |
| 42 | 39 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) |
| 43 | 41 42 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ 𝑆 ) |
| 44 | 38 43 | fssresd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 45 | 0zd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 0 ∈ ℤ ) | |
| 46 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) | |
| 47 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 48 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℂ ) |
| 49 | 1 47 48 | psergf | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ) |
| 50 | 49 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ∈ ℂ ) |
| 51 | 48 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 52 | 51 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) ∈ ℝ* ) |
| 53 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 54 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 55 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 56 | 54 55 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑅 ∈ ℝ* ) |
| 58 | 0cn | ⊢ 0 ∈ ℂ | |
| 59 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 60 | 59 | cnmetdval | ⊢ ( ( 𝑧 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
| 61 | 48 58 60 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
| 62 | 48 | subid1d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 − 0 ) = 𝑧 ) |
| 63 | 62 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ ( 𝑧 − 0 ) ) = ( abs ‘ 𝑧 ) ) |
| 64 | 61 63 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑧 ) ) |
| 65 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 66 | 65 7 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 67 | 14 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 68 | 0cnd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 0 ∈ ℂ ) | |
| 69 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) | |
| 70 | 67 53 68 48 69 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 71 | 66 70 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
| 72 | 64 71 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
| 73 | 16 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
| 75 | 52 53 57 72 74 | xrlttrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) < 𝑅 ) |
| 76 | 1 47 4 48 75 | radcnvlt2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ∈ dom ⇝ ) |
| 77 | 8 45 46 50 76 | isumclim2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ⇝ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
| 78 | 43 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑆 ) |
| 79 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 80 | 79 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
| 81 | 80 | sumeq2sdv | ⊢ ( 𝑦 = 𝑧 → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
| 82 | sumex | ⊢ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ∈ V | |
| 83 | 81 2 82 | fvmpt | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝐹 ‘ 𝑧 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
| 84 | 78 83 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
| 85 | 77 84 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ⇝ ( 𝐹 ‘ 𝑧 ) ) |
| 86 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( 0 ... 𝑘 ) = ( 0 ... 𝑚 ) ) | |
| 87 | 86 | sumeq1d | ⊢ ( 𝑘 = 𝑚 → Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) |
| 88 | 87 | mpteq2dv | ⊢ ( 𝑘 = 𝑚 → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
| 89 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) | |
| 90 | 31 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ V |
| 91 | 88 89 90 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
| 92 | 91 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
| 93 | 92 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) ) |
| 94 | 79 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 95 | 94 | sumeq2sdv | ⊢ ( 𝑦 = 𝑧 → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 96 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) | |
| 97 | sumex | ⊢ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ V | |
| 98 | 95 96 97 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 99 | 98 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 100 | eqidd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) | |
| 101 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) | |
| 102 | 101 8 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 103 | 49 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ) |
| 104 | elfznn0 | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑖 ∈ ℕ0 ) | |
| 105 | ffvelcdm | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ ℂ ) | |
| 106 | 103 104 105 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ ℂ ) |
| 107 | 100 102 106 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 108 | 93 99 107 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 109 | 108 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
| 110 | 0z | ⊢ 0 ∈ ℤ | |
| 111 | seqfn | ⊢ ( 0 ∈ ℤ → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) ) | |
| 112 | 110 111 | ax-mp | ⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) |
| 113 | 8 | fneq2i | ⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 ↔ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) ) |
| 114 | 112 113 | mpbir | ⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 |
| 115 | dffn5 | ⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 ↔ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) | |
| 116 | 114 115 | mpbi | ⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 117 | 109 116 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ) |
| 118 | fvres | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 119 | 118 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 120 | 85 117 119 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) ⇝ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) ) |
| 121 | 91 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
| 122 | 121 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( ℂ D ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ) |
| 123 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 124 | 123 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 125 | 124 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 126 | 9 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } ) |
| 127 | 123 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 128 | 127 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 129 | 14 15 18 128 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 130 | 7 129 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
| 131 | 130 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
| 132 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 0 ... 𝑚 ) ∈ Fin ) | |
| 133 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 134 | 133 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 135 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐵 ⊆ ℂ ) |
| 136 | 135 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 137 | 136 | 3adant2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 138 | 1 134 137 | psergf | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 139 | 104 | 3ad2ant2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑖 ∈ ℕ0 ) |
| 140 | 138 139 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
| 141 | 9 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ℂ ∈ { ℝ , ℂ } ) |
| 142 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) | |
| 143 | 133 104 142 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 144 | 143 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 145 | 136 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 146 | id | ⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) | |
| 147 | 104 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝑖 ∈ ℕ0 ) |
| 148 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) | |
| 149 | 146 147 148 | syl2anr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
| 150 | 145 149 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
| 151 | 144 150 | mulcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
| 152 | ovexd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ V ) | |
| 153 | c0ex | ⊢ 0 ∈ V | |
| 154 | ovex | ⊢ ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ∈ V | |
| 155 | 153 154 | ifex | ⊢ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V |
| 156 | 155 | a1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V ) |
| 157 | 155 | a1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ ℂ ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V ) |
| 158 | dvexp2 | ⊢ ( 𝑖 ∈ ℕ0 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ ℂ ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) | |
| 159 | 147 158 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ ℂ ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
| 160 | 21 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ⊆ ℂ ) |
| 161 | 130 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
| 162 | 141 149 157 159 160 125 123 161 | dvmptres | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
| 163 | 141 150 156 162 143 | dvmptcmul | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
| 164 | 141 151 152 163 | dvmptcl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
| 165 | 164 | 3impa | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
| 166 | 104 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑖 ∈ ℕ0 ) |
| 167 | 1 | pserval2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 168 | 145 166 167 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 169 | 168 | mpteq2dva | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 170 | 169 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) ) |
| 171 | 170 163 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
| 172 | 125 123 126 131 132 140 165 171 | dvmptfsum | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
| 173 | 122 172 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
| 174 | 173 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ) |
| 175 | nnssnn0 | ⊢ ℕ ⊆ ℕ0 | |
| 176 | resmpt | ⊢ ( ℕ ⊆ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ) | |
| 177 | 175 176 | ax-mp | ⊢ ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
| 178 | oveq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 ↑ 𝑖 ) = ( 𝑥 ↑ 𝑖 ) ) | |
| 179 | 178 | oveq2d | ⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) |
| 180 | 179 | mpteq2dv | ⊢ ( 𝑎 = 𝑥 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) ) |
| 181 | oveq1 | ⊢ ( 𝑖 = 𝑛 → ( 𝑖 + 1 ) = ( 𝑛 + 1 ) ) | |
| 182 | fvoveq1 | ⊢ ( 𝑖 = 𝑛 → ( 𝐴 ‘ ( 𝑖 + 1 ) ) = ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) | |
| 183 | 181 182 | oveq12d | ⊢ ( 𝑖 = 𝑛 → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 184 | oveq2 | ⊢ ( 𝑖 = 𝑛 → ( 𝑥 ↑ 𝑖 ) = ( 𝑥 ↑ 𝑛 ) ) | |
| 185 | 183 184 | oveq12d | ⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 186 | 185 | cbvmptv | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 187 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) | |
| 188 | fvoveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ ( 𝑚 + 1 ) ) = ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) | |
| 189 | 187 188 | oveq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 190 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 191 | ovex | ⊢ ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ V | |
| 192 | 189 190 191 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 193 | 192 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 194 | 193 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 195 | 186 194 | eqtr4i | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 196 | 180 195 | eqtrdi | ⊢ ( 𝑎 = 𝑥 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 197 | 196 | cbvmptv | ⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 198 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) | |
| 199 | 198 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 200 | 199 | sumeq2sdv | ⊢ ( 𝑦 = 𝑧 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 201 | 200 | cbvmptv | ⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑧 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 202 | peano2nn0 | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) | |
| 203 | 202 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 204 | 203 | nn0cnd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℂ ) |
| 205 | 133 203 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 206 | 204 205 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ∈ ℂ ) |
| 207 | 206 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 208 | fveq2 | ⊢ ( 𝑟 = 𝑗 → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) = ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) | |
| 209 | 208 | seqeq3d | ⊢ ( 𝑟 = 𝑗 → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) = seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ) |
| 210 | 209 | eleq1d | ⊢ ( 𝑟 = 𝑗 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ ) ) |
| 211 | 210 | cbvrabv | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑗 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ } |
| 212 | 211 | supeq1i | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑗 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 213 | 198 | seqeq3d | ⊢ ( 𝑦 = 𝑧 → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) = seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ) |
| 214 | 213 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) |
| 215 | 214 | cbvmptv | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) |
| 216 | fveq2 | ⊢ ( 𝑗 = 𝑚 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) | |
| 217 | 216 | mpteq2dv | ⊢ ( 𝑗 = 𝑚 → ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
| 218 | 215 217 | eqtrid | ⊢ ( 𝑗 = 𝑚 → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
| 219 | 218 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
| 220 | 17 | rpred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ ) |
| 221 | 1 2 3 4 5 6 | psercnlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 222 | 221 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 223 | 222 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 224 | 197 207 212 | radcnvcl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 225 | 54 224 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 226 | 221 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 227 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 228 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 229 | 228 | fdmi | ⊢ dom abs = ℂ |
| 230 | 227 229 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 231 | 5 230 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 232 | 231 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 233 | 232 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 234 | 233 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 235 | 222 | rpred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 236 | avglt2 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) | |
| 237 | 234 235 236 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
| 238 | 226 237 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) |
| 239 | 222 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ 𝑀 ) |
| 240 | 235 239 | absidd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 241 | 222 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℂ ) |
| 242 | oveq1 | ⊢ ( 𝑤 = 𝑀 → ( 𝑤 ↑ 𝑖 ) = ( 𝑀 ↑ 𝑖 ) ) | |
| 243 | 242 | oveq2d | ⊢ ( 𝑤 = 𝑀 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) |
| 244 | 243 | mpteq2dv | ⊢ ( 𝑤 = 𝑀 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
| 245 | oveq1 | ⊢ ( 𝑎 = 𝑤 → ( 𝑎 ↑ 𝑖 ) = ( 𝑤 ↑ 𝑖 ) ) | |
| 246 | 245 | oveq2d | ⊢ ( 𝑎 = 𝑤 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) |
| 247 | 246 | mpteq2dv | ⊢ ( 𝑎 = 𝑤 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) ) |
| 248 | 247 | cbvmptv | ⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) ) |
| 249 | nn0ex | ⊢ ℕ0 ∈ V | |
| 250 | 249 | mptex | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ∈ V |
| 251 | 244 248 250 | fvmpt | ⊢ ( 𝑀 ∈ ℂ → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
| 252 | 241 251 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
| 253 | 252 | seqeq3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) ) = seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) ) |
| 254 | fveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑖 ) ) | |
| 255 | oveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑖 ) ) | |
| 256 | 254 255 | oveq12d | ⊢ ( 𝑛 = 𝑖 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
| 257 | 256 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
| 258 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) | |
| 259 | 258 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 260 | 259 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 261 | 257 260 | eqtrid | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 262 | 261 | cbvmptv | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 263 | 1 262 | eqtri | ⊢ 𝐺 = ( 𝑦 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 264 | fveq2 | ⊢ ( 𝑟 = 𝑠 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑠 ) ) | |
| 265 | 264 | seqeq3d | ⊢ ( 𝑟 = 𝑠 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ) |
| 266 | 265 | eleq1d | ⊢ ( 𝑟 = 𝑠 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) ) |
| 267 | 266 | cbvrabv | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } |
| 268 | 267 | supeq1i | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 269 | 4 268 | eqtri | ⊢ 𝑅 = sup ( { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 270 | eqid | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) | |
| 271 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 272 | 221 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 273 | 240 272 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) < 𝑅 ) |
| 274 | 263 269 270 271 241 273 | dvradcnv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 275 | 253 274 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) ) ∈ dom ⇝ ) |
| 276 | 197 207 212 241 275 | radcnvle | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 277 | 240 276 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 278 | 18 223 225 238 277 | xrltletrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 279 | 197 201 207 212 219 220 278 41 | pserulm | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 280 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 281 | oveq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) | |
| 282 | 281 | oveq2d | ⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 283 | 282 | mpteq2dv | ⊢ ( 𝑎 = 𝑦 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 284 | eqid | ⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) | |
| 285 | 249 | mptex | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ∈ V |
| 286 | 283 284 285 | fvmpt | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 287 | 280 286 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 288 | 287 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 289 | 288 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) ) |
| 290 | oveq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) | |
| 291 | fvoveq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝐴 ‘ ( 𝑖 + 1 ) ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) | |
| 292 | 290 291 | oveq12d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 293 | oveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝑦 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑘 ) ) | |
| 294 | 292 293 | oveq12d | ⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 295 | eqid | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) | |
| 296 | ovex | ⊢ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V | |
| 297 | 294 295 296 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 298 | 297 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 299 | 289 298 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 300 | 299 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 301 | 300 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 302 | 279 301 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 303 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 304 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 305 | 304 | fveq2i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 306 | 303 305 | eqtri | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 307 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 1 ∈ ℤ ) | |
| 308 | 0zd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 0 ∈ ℤ ) | |
| 309 | peano2nn0 | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) | |
| 310 | 309 | nn0cnd | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℂ ) |
| 311 | 310 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℂ ) |
| 312 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 313 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) | |
| 314 | 312 309 313 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 315 | 311 314 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) ∈ ℂ ) |
| 316 | 280 148 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
| 317 | 315 316 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
| 318 | 287 317 | fmpt3d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 319 | 318 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑚 ) ∈ ℂ ) |
| 320 | 8 308 319 | serf | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) |
| 321 | 320 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 322 | 321 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 323 | 322 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ ) |
| 324 | 30 31 | elmap | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ ) |
| 325 | 323 324 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
| 326 | 325 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
| 327 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℕ ) | |
| 328 | 327 | nnne0d | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ≠ 0 ) |
| 329 | 328 | neneqd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ¬ 𝑖 = 0 ) |
| 330 | 329 | iffalsed | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) |
| 331 | 330 | oveq2d | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) |
| 332 | 331 | sumeq2i | ⊢ Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) |
| 333 | 1zzd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ℤ ) | |
| 334 | nnz | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) | |
| 335 | 334 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝑚 ∈ ℤ ) |
| 336 | 271 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 337 | 327 | nnnn0d | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℕ0 ) |
| 338 | 336 337 142 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 339 | 327 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℕ ) |
| 340 | 339 | nncnd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℂ ) |
| 341 | 280 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 342 | nnm1nn0 | ⊢ ( 𝑖 ∈ ℕ → ( 𝑖 − 1 ) ∈ ℕ0 ) | |
| 343 | 327 342 | syl | ⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ( 𝑖 − 1 ) ∈ ℕ0 ) |
| 344 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑖 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) ∈ ℂ ) | |
| 345 | 341 343 344 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) ∈ ℂ ) |
| 346 | 340 345 | mulcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ∈ ℂ ) |
| 347 | 338 346 | mulcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ ℂ ) |
| 348 | fveq2 | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) | |
| 349 | id | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → 𝑖 = ( 𝑘 + 1 ) ) | |
| 350 | oveq1 | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) | |
| 351 | 350 | oveq2d | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) = ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 352 | 349 351 | oveq12d | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
| 353 | 348 352 | oveq12d | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 354 | 333 333 335 347 353 | fsumshftm | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 355 | 332 354 | eqtrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 356 | fz1ssfz0 | ⊢ ( 1 ... 𝑚 ) ⊆ ( 0 ... 𝑚 ) | |
| 357 | 356 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ... 𝑚 ) ⊆ ( 0 ... 𝑚 ) ) |
| 358 | 331 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) |
| 359 | 358 347 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
| 360 | eldif | ⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) ↔ ( 𝑖 ∈ ( 0 ... 𝑚 ) ∧ ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) | |
| 361 | elfzuz2 | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 362 | elfzp12 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑖 ∈ ( 0 ... 𝑚 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) ) | |
| 363 | 361 362 | syl | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( 𝑖 ∈ ( 0 ... 𝑚 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) ) |
| 364 | 363 | ibi | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) |
| 365 | 364 | ord | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( ¬ 𝑖 = 0 → 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) |
| 366 | 365 | con1d | ⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) → 𝑖 = 0 ) ) |
| 367 | 366 | imp | ⊢ ( ( 𝑖 ∈ ( 0 ... 𝑚 ) ∧ ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) → 𝑖 = 0 ) |
| 368 | 360 367 | sylbi | ⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) → 𝑖 = 0 ) |
| 369 | 304 | oveq1i | ⊢ ( 1 ... 𝑚 ) = ( ( 0 + 1 ) ... 𝑚 ) |
| 370 | 369 | difeq2i | ⊢ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) = ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) |
| 371 | 368 370 | eleq2s | ⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 = 0 ) |
| 372 | 371 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → 𝑖 = 0 ) |
| 373 | 372 | iftrued | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = 0 ) |
| 374 | 373 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · 0 ) ) |
| 375 | eldifi | ⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ( 0 ... 𝑚 ) ) | |
| 376 | 375 104 | syl | ⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℕ0 ) |
| 377 | 336 376 142 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 378 | 377 | mul01d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · 0 ) = 0 ) |
| 379 | 374 378 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = 0 ) |
| 380 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑚 ) ∈ Fin ) | |
| 381 | 357 359 379 380 | fsumss | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
| 382 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 383 | 382 | oveq1i | ⊢ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) = ( 0 ... ( 𝑚 − 1 ) ) |
| 384 | 383 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
| 385 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) → 𝑘 ∈ ℕ0 ) | |
| 386 | 385 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 387 | 386 297 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 388 | 341 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 389 | 388 286 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
| 390 | 389 | fveq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) ) |
| 391 | 336 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 392 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 393 | 386 392 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 394 | 391 393 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 395 | 393 | nn0cnd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 396 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) | |
| 397 | 341 385 396 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
| 398 | 394 395 397 | mul12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 399 | 386 | nn0cnd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 400 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 401 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 402 | 399 400 401 | sylancl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 403 | 402 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑦 ↑ 𝑘 ) ) |
| 404 | 403 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 405 | 404 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 406 | 395 394 397 | mulassd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 407 | 398 405 406 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 408 | 387 390 407 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 409 | nnm1nn0 | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℕ0 ) | |
| 410 | 409 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 − 1 ) ∈ ℕ0 ) |
| 411 | 410 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 − 1 ) ∈ ℕ0 ) |
| 412 | 411 8 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 413 | 403 397 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ∈ ℂ ) |
| 414 | 395 413 | mulcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ∈ ℂ ) |
| 415 | 394 414 | mulcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ∈ ℂ ) |
| 416 | 408 412 415 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
| 417 | 384 416 | eqtrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
| 418 | 355 381 417 | 3eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
| 419 | 418 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
| 420 | fveq2 | ⊢ ( 𝑗 = ( 𝑚 − 1 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) | |
| 421 | 420 | mpteq2dv | ⊢ ( 𝑗 = ( 𝑚 − 1 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
| 422 | eqid | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) | |
| 423 | 31 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ∈ V |
| 424 | 421 422 423 | fvmpt | ⊢ ( ( 𝑚 − 1 ) ∈ ℕ0 → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
| 425 | 410 424 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
| 426 | 419 425 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) = ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) ) |
| 427 | 426 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
| 428 | 8 306 11 307 326 427 | ulmshft | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ↔ ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
| 429 | 302 428 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 430 | 177 429 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 431 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 432 | 431 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 1 ∈ ℕ0 ) |
| 433 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑚 ) ∈ Fin ) | |
| 434 | 164 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
| 435 | 433 434 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
| 436 | 435 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ ) |
| 437 | 30 31 | elmap | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ ) |
| 438 | 436 437 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
| 439 | 438 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
| 440 | 8 303 432 439 | ulmres | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ↔ ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
| 441 | 430 440 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 442 | 174 441 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 443 | 8 10 11 34 44 120 442 | ulmdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |