This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffn5 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel | ⊢ ( 𝐹 Fn 𝐴 → Rel 𝐹 ) | |
| 2 | dfrel4v | ⊢ ( Rel 𝐹 ↔ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝐹 𝑦 } ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝐹 𝑦 } ) |
| 4 | fnbr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝑦 ) → 𝑥 ∈ 𝐴 ) | |
| 5 | 4 | ex | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 6 | 5 | pm4.71rd | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 7 | eqcom | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 8 | fnbrfvb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) | |
| 9 | 7 8 | bitrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 𝐹 𝑦 ) ) |
| 10 | 9 | pm5.32da | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 11 | 6 10 | bitr4d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 12 | 11 | opabbidv | ⊢ ( 𝐹 Fn 𝐴 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝐹 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ) |
| 13 | 3 12 | eqtrd | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ) |
| 14 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } | |
| 15 | 13 14 | eqtr4di | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) | |
| 18 | 16 17 | fnmpti | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) Fn 𝐴 |
| 19 | fneq1 | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) Fn 𝐴 ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) → 𝐹 Fn 𝐴 ) |
| 21 | 15 20 | impbii | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |