This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite series converges to a continuous function on the open disk of radius R , where R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| Assertion | psercn | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | sumex | ⊢ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V | |
| 8 | 7 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V |
| 9 | 2 | fnmpt | ⊢ ( ∀ 𝑦 ∈ 𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V → 𝐹 Fn 𝑆 ) |
| 10 | 8 9 | mp1i | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
| 11 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 12 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 13 | 12 | fdmi | ⊢ dom abs = ℂ |
| 14 | 11 13 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 15 | 5 14 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 17 | 16 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 18 | 0cn | ⊢ 0 ∈ ℂ | |
| 19 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 20 | 19 | cnmetdval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) ) |
| 21 | 18 17 20 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) ) |
| 22 | abssub | ⊢ ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) ) | |
| 23 | 18 17 22 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) ) |
| 24 | 17 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 − 0 ) = 𝑎 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ ( 𝑎 − 0 ) ) = ( abs ‘ 𝑎 ) ) |
| 26 | 21 23 25 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ 𝑎 ) ) |
| 27 | breq2 | ⊢ ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) | |
| 28 | breq2 | ⊢ ( ( ( abs ‘ 𝑎 ) + 1 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) | |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) | |
| 30 | 29 5 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
| 31 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 32 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 33 | 12 31 32 | mp2b | ⊢ ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 34 | 30 33 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 35 | 34 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) |
| 36 | 0re | ⊢ 0 ∈ ℝ | |
| 37 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 38 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 40 | 37 39 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 41 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) | |
| 42 | 36 40 41 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) |
| 43 | 35 42 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) |
| 44 | 43 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
| 46 | 17 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 47 | avglt1 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) | |
| 48 | 46 47 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) |
| 49 | 45 48 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) |
| 50 | 46 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 52 | 27 28 49 51 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) |
| 53 | 52 6 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 54 | 26 53 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) |
| 55 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 56 | 1 2 3 4 5 6 | psercnlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 57 | 56 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 58 | 57 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 59 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) ) | |
| 60 | 55 18 58 59 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) ) |
| 61 | 17 54 60 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 62 | 61 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 63 | 2 | reseq1i | ⊢ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 64 | 1 2 3 4 5 56 | psercnlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ∧ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) ) |
| 65 | 64 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 66 | 64 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) |
| 67 | 65 66 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ) |
| 68 | 67 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ) |
| 69 | 63 68 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ) |
| 70 | eqid | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 71 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 72 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 73 | 72 | seqeq3d | ⊢ ( 𝑘 = 𝑦 → seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ) |
| 74 | 73 | fveq1d | ⊢ ( 𝑘 = 𝑦 → ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) |
| 75 | 74 | cbvmptv | ⊢ ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) |
| 76 | fveq2 | ⊢ ( 𝑠 = 𝑖 → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | |
| 77 | 76 | mpteq2dv | ⊢ ( 𝑠 = 𝑖 → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 78 | 75 77 | eqtrid | ⊢ ( 𝑠 = 𝑖 → ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 79 | 78 | cbvmptv | ⊢ ( 𝑠 ∈ ℕ0 ↦ ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 80 | 57 | rpred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 81 | 56 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 82 | 1 70 71 4 79 80 81 65 | psercn2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) ) |
| 83 | 69 82 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) ) |
| 84 | cncff | ⊢ ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ ) | |
| 85 | 83 84 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ ) |
| 86 | 85 61 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) ∈ ℂ ) |
| 87 | 62 86 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 88 | 87 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 89 | ffnfv | ⊢ ( 𝐹 : 𝑆 ⟶ ℂ ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) ) | |
| 90 | 10 88 89 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 91 | 67 15 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ) |
| 92 | ssid | ⊢ ℂ ⊆ ℂ | |
| 93 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 94 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) | |
| 95 | 93 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 96 | 95 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 97 | 93 94 96 | cncfcn | ⊢ ( ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 98 | 91 92 97 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 99 | 83 98 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 100 | 93 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 101 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 102 | 101 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
| 103 | 100 91 102 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
| 104 | 61 103 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
| 105 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) | |
| 106 | 105 | cncnpi | ⊢ ( ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑎 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 107 | 99 104 106 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 108 | cnex | ⊢ ℂ ∈ V | |
| 109 | 108 15 | ssexi | ⊢ 𝑆 ∈ V |
| 110 | 109 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ∈ V ) |
| 111 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) | |
| 112 | 100 67 110 111 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
| 113 | 112 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 114 | 113 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 115 | 107 114 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 116 | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) | |
| 117 | 100 109 116 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top |
| 118 | 117 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 119 | dfss2 | ⊢ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ↔ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) | |
| 120 | 67 119 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 121 | 93 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 122 | 121 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 123 | 55 18 58 122 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 124 | elrestr | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 125 | 100 109 123 124 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 126 | 120 125 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 127 | isopn3i | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) | |
| 128 | 117 126 127 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 129 | 61 128 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
| 130 | 90 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 131 | 101 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 132 | 100 15 131 | mp2an | ⊢ 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 133 | 132 101 | cnprest | ⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ) ∧ ( 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∧ 𝐹 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
| 134 | 118 67 129 130 133 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
| 135 | 115 134 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 136 | 135 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
| 137 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 138 | 95 15 137 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) |
| 139 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) ) | |
| 140 | 138 95 139 | mp2an | ⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
| 141 | 90 136 140 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 142 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 143 | 93 142 96 | cncfcn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 144 | 15 92 143 | mp2an | ⊢ ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) |
| 145 | 141 144 | eleqtrrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |