This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The radius of convergence of the (formal) derivative H of the power series G is at least as large as the radius of convergence of G . (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvradcnv.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| dvradcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| dvradcnv.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑋 ↑ 𝑛 ) ) ) | ||
| dvradcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| dvradcnv.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| dvradcnv.l | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | ||
| Assertion | dvradcnv | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvradcnv.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | dvradcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 3 | dvradcnv.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑋 ↑ 𝑛 ) ) ) | |
| 4 | dvradcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 5 | dvradcnv.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 6 | dvradcnv.l | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | |
| 7 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 13 | nn0ex | ⊢ ℕ0 ∈ V | |
| 14 | 13 | mptex | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ∈ V |
| 15 | 14 | shftval4 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 16 | 10 12 15 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 17 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) | |
| 18 | 10 12 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 20 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 22 | id | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → 𝑖 = ( 𝑘 + 1 ) ) | |
| 23 | 2fveq3 | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) | |
| 24 | 22 23 | oveq12d | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 25 | eqid | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) | |
| 26 | ovex | ⊢ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ∈ V | |
| 27 | 24 25 26 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 28 | 21 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 29 | 1 | pserval2 | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) |
| 30 | 5 20 29 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) |
| 31 | 30 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 34 | 16 19 33 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 35 | 21 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 36 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) | |
| 37 | 4 20 36 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 38 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) | |
| 39 | 5 20 38 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 40 | 37 39 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 41 | 40 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 42 | 35 41 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ∈ ℝ ) |
| 43 | 34 42 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ∈ ℝ ) |
| 44 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) | |
| 45 | 44 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ ( 𝑛 + 1 ) ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) |
| 46 | 44 45 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑋 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑘 ) ) | |
| 48 | 46 47 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 49 | ovex | ⊢ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ V | |
| 50 | 48 3 49 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 52 | 21 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 53 | 52 37 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 54 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) | |
| 55 | 5 54 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
| 56 | 53 55 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
| 57 | 51 56 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 58 | id | ⊢ ( 𝑖 = 𝑘 → 𝑖 = 𝑘 ) | |
| 59 | 2fveq3 | ⊢ ( 𝑖 = 𝑘 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | |
| 60 | 58 59 | oveq12d | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) = ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 61 | 60 | cbvmptv | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 62 | 1 4 2 5 6 61 | radcnvlt1 | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
| 63 | 62 | simpld | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ) |
| 64 | climdm | ⊢ ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) | |
| 65 | 63 64 | sylib | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 66 | 0z | ⊢ 0 ∈ ℤ | |
| 67 | neg1z | ⊢ - 1 ∈ ℤ | |
| 68 | 14 | isershft | ⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ↔ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 69 | 66 67 68 | mp2an | ⊢ ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ↔ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 70 | 65 69 | sylib | ⊢ ( 𝜑 → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 71 | seqex | ⊢ seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ V | |
| 72 | fvex | ⊢ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V | |
| 73 | 71 72 | breldm | ⊢ ( seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 74 | 70 73 | syl | ⊢ ( 𝜑 → seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 75 | eqid | ⊢ ( ℤ≥ ‘ ( 0 + - 1 ) ) = ( ℤ≥ ‘ ( 0 + - 1 ) ) | |
| 76 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 77 | 76 | addlidi | ⊢ ( 0 + - 1 ) = - 1 |
| 78 | 0le1 | ⊢ 0 ≤ 1 | |
| 79 | 1re | ⊢ 1 ∈ ℝ | |
| 80 | le0neg2 | ⊢ ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) ) | |
| 81 | 79 80 | ax-mp | ⊢ ( 0 ≤ 1 ↔ - 1 ≤ 0 ) |
| 82 | 78 81 | mpbi | ⊢ - 1 ≤ 0 |
| 83 | 77 82 | eqbrtri | ⊢ ( 0 + - 1 ) ≤ 0 |
| 84 | 77 67 | eqeltri | ⊢ ( 0 + - 1 ) ∈ ℤ |
| 85 | 84 | eluz1i | ⊢ ( 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ↔ ( 0 ∈ ℤ ∧ ( 0 + - 1 ) ≤ 0 ) ) |
| 86 | 66 83 85 | mpbir2an | ⊢ 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) |
| 87 | 86 | a1i | ⊢ ( 𝜑 → 0 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) |
| 88 | eluzelcn | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → 𝑘 ∈ ℂ ) | |
| 89 | 88 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 90 | 10 89 15 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ) |
| 91 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 92 | 91 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 93 | 1 4 5 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 94 | 93 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ∈ ℂ ) |
| 95 | 94 | abscld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 96 | 92 95 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 97 | 96 | recnd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 98 | 97 | fmpttd | ⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 99 | 10 88 17 | sylancr | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
| 100 | eluzp1p1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) ) | |
| 101 | 77 | oveq1i | ⊢ ( ( 0 + - 1 ) + 1 ) = ( - 1 + 1 ) |
| 102 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 103 | 10 76 102 | addcomli | ⊢ ( - 1 + 1 ) = 0 |
| 104 | 101 103 | eqtri | ⊢ ( ( 0 + - 1 ) + 1 ) = 0 |
| 105 | 104 | fveq2i | ⊢ ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 106 | 7 105 | eqtr4i | ⊢ ℕ0 = ( ℤ≥ ‘ ( ( 0 + - 1 ) + 1 ) ) |
| 107 | 100 106 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 108 | 99 107 | eqeltrd | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) → ( 1 + 𝑘 ) ∈ ℕ0 ) |
| 109 | ffvelcdm | ⊢ ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ ∧ ( 1 + 𝑘 ) ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ∈ ℂ ) | |
| 110 | 98 108 109 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1 + 𝑘 ) ) ∈ ℂ ) |
| 111 | 90 110 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + - 1 ) ) ) → ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 112 | 75 87 111 | iserex | ⊢ ( 𝜑 → ( seq ( 0 + - 1 ) ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) ) |
| 113 | 74 112 | mpbid | ⊢ ( 𝜑 → seq 0 ( + , ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ) ∈ dom ⇝ ) |
| 114 | 1red | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 1 ∈ ℝ ) | |
| 115 | neqne | ⊢ ( ¬ 𝑋 = 0 → 𝑋 ≠ 0 ) | |
| 116 | absrpcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) | |
| 117 | 5 115 116 | syl2an | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) |
| 118 | 117 | rprecred | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ ) |
| 119 | 114 118 | ifclda | ⊢ ( 𝜑 → if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 120 | oveq1 | ⊢ ( 1 = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) | |
| 121 | 120 | breq2d | ⊢ ( 1 = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ↔ ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
| 122 | oveq1 | ⊢ ( ( 1 / ( abs ‘ 𝑋 ) ) = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) | |
| 123 | 122 | breq2d | ⊢ ( ( 1 / ( abs ‘ 𝑋 ) ) = if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) → ( ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ↔ ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
| 124 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 125 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 126 | 124 125 | sylbir | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → 𝑘 ∈ ℕ0 ) |
| 127 | 21 | nn0ge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝑘 + 1 ) ) |
| 128 | 40 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 129 | 35 41 127 128 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 130 | 126 129 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 131 | 130 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → 0 ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 132 | oveq1 | ⊢ ( 𝑋 = 0 → ( 𝑋 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) | |
| 133 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 134 | 133 124 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ℕ ) |
| 135 | 134 | 0expd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 136 | 132 135 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( 𝑋 ↑ 𝑘 ) = 0 ) |
| 137 | 136 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) ) |
| 138 | 53 | mul01d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 139 | 126 138 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 140 | 139 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · 0 ) = 0 ) |
| 141 | 137 140 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = 0 ) |
| 142 | 141 | abs00bd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = 0 ) |
| 143 | 42 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ∈ ℂ ) |
| 144 | 143 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 145 | 126 144 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 146 | 145 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 147 | 131 142 146 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 148 | df-ne | ⊢ ( 𝑋 ≠ 0 ↔ ¬ 𝑋 = 0 ) | |
| 149 | 56 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 150 | 52 37 55 | mulassd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 151 | 150 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( abs ‘ ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 152 | 37 55 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
| 153 | 52 152 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( ( abs ‘ ( 𝑘 + 1 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 154 | 35 127 | absidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 155 | 154 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ ( 𝑘 + 1 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 156 | 151 153 155 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 157 | 149 156 | eqled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 158 | 157 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 159 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ℂ ) |
| 160 | 116 | rpreccld | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 161 | 159 160 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 162 | 161 | rpcnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 1 / ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 163 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 164 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 165 | 164 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℂ ) |
| 166 | 162 163 165 | mul12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 167 | 40 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 168 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
| 169 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 170 | 167 168 169 | absdivd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) / ( abs ‘ 𝑋 ) ) ) |
| 171 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 172 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 173 | 171 172 168 169 | divassd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) ) |
| 174 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → 𝑘 ∈ ℂ ) |
| 175 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 176 | 174 10 175 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 177 | 176 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑋 ↑ 𝑘 ) ) |
| 178 | 21 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 179 | 178 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 180 | 168 169 179 | expm1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) |
| 181 | 177 180 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ↑ 𝑘 ) = ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) |
| 182 | 181 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑋 ↑ ( 𝑘 + 1 ) ) / 𝑋 ) ) ) |
| 183 | 173 182 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 184 | 183 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) / 𝑋 ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 185 | 5 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 186 | 185 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 187 | 186 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 188 | 159 116 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ+ ) |
| 189 | 188 | rpne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 190 | 165 187 189 | divrec2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) / ( abs ‘ 𝑋 ) ) = ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 191 | 170 184 190 | 3eqtr3rd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) = ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 192 | 191 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 𝑘 + 1 ) · ( ( 1 / ( abs ‘ 𝑋 ) ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 193 | 166 192 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) = ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 194 | 158 193 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 195 | 126 194 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑋 ≠ 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 196 | 148 195 | sylan2br | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) ∧ ¬ 𝑋 = 0 ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( ( 1 / ( abs ‘ 𝑋 ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 197 | 121 123 147 196 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 198 | 51 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) = ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 199 | 126 198 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) = ( abs ‘ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 200 | 34 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 201 | 126 200 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) = ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( 𝑘 + 1 ) · ( abs ‘ ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑋 ↑ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 202 | 197 199 201 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑘 ) ) ≤ ( if ( 𝑋 = 0 , 1 , ( 1 / ( abs ‘ 𝑋 ) ) ) · ( ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) shift - 1 ) ‘ 𝑘 ) ) ) |
| 203 | 7 9 43 57 113 119 202 | cvgcmpce | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |