This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq1 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → seq 𝑀 ( + , 𝐹 ) = seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 3 | 1 2 | fneq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ↔ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) ) |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | 4 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
| 6 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) | |
| 7 | fvex | ⊢ ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V | |
| 8 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) | |
| 9 | 8 | seqval | ⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) |
| 10 | 5 6 7 8 9 | uzrdgfni | ⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
| 11 | 3 10 | dedth | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |