This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of terms in the infinite sequence defining a power series for fixed X . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| Assertion | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | 1 | pserval | ⊢ ( 𝑋 ∈ ℂ → ( 𝐺 ‘ 𝑋 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝐺 ‘ 𝑋 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 6 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) | |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑋 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 8 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑚 ) ∈ ℂ ) | |
| 9 | 8 | adantll | ⊢ ( ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑋 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑚 ) ∈ ℂ ) |
| 10 | 7 9 | mulcld | ⊢ ( ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑋 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ∈ ℂ ) |
| 11 | 5 10 | fmpt3d | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 12 | 2 3 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |