This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem neneqd

Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis neneqd.1 ( 𝜑𝐴𝐵 )
Assertion neneqd ( 𝜑 → ¬ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 neneqd.1 ( 𝜑𝐴𝐵 )
2 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
3 1 2 sylib ( 𝜑 → ¬ 𝐴 = 𝐵 )