This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| Assertion | psercnlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 8 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 9 | 8 | fdmi | ⊢ dom abs = ℂ |
| 10 | 7 9 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 11 | 5 10 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 14 | 13 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 15 | readdcl | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) + 𝑅 ) ∈ ℝ ) | |
| 16 | 14 15 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) + 𝑅 ) ∈ ℝ ) |
| 17 | 16 | rehalfcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ∈ ℝ ) |
| 18 | peano2re | ⊢ ( ( abs ‘ 𝑎 ) ∈ ℝ → ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ ) | |
| 19 | 14 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ ) |
| 21 | 17 20 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ∈ ℝ ) |
| 22 | 6 21 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 23 | 0re | ⊢ 0 ∈ ℝ | |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℝ ) |
| 25 | 13 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 26 | breq2 | ⊢ ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) | |
| 27 | breq2 | ⊢ ( ( ( abs ‘ 𝑎 ) + 1 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) | |
| 28 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) | |
| 29 | 28 5 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
| 30 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 31 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 32 | 8 30 31 | mp2b | ⊢ ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 33 | 29 32 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 34 | 33 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) |
| 35 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 36 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 38 | 35 37 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 39 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) | |
| 40 | 23 38 39 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) |
| 41 | 34 40 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) |
| 42 | 41 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
| 44 | avglt1 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) | |
| 45 | 14 44 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) |
| 46 | 43 45 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) |
| 47 | 14 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
| 49 | 26 27 46 48 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) |
| 50 | 49 6 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 51 | 24 14 22 25 50 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 < 𝑀 ) |
| 52 | 22 51 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 53 | breq1 | ⊢ ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) < 𝑅 ↔ if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) < 𝑅 ) ) | |
| 54 | breq1 | ⊢ ( ( ( abs ‘ 𝑎 ) + 1 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( ( abs ‘ 𝑎 ) + 1 ) < 𝑅 ↔ if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) < 𝑅 ) ) | |
| 55 | avglt2 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) < 𝑅 ) ) | |
| 56 | 14 55 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) < 𝑅 ) ) |
| 57 | 43 56 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) < 𝑅 ) |
| 58 | 19 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ* ) |
| 59 | 38 58 | xrlenltd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑅 ≤ ( ( abs ‘ 𝑎 ) + 1 ) ↔ ¬ ( ( abs ‘ 𝑎 ) + 1 ) < 𝑅 ) ) |
| 60 | 0xr | ⊢ 0 ∈ ℝ* | |
| 61 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 62 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) | |
| 63 | 60 61 62 | mp2an | ⊢ ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 64 | 36 63 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 65 | 64 | simp2d | ⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 66 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ 𝑅 ) |
| 67 | ge0gtmnf | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ) → -∞ < 𝑅 ) | |
| 68 | 38 66 67 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → -∞ < 𝑅 ) |
| 69 | xrre | ⊢ ( ( ( 𝑅 ∈ ℝ* ∧ ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ ) ∧ ( -∞ < 𝑅 ∧ 𝑅 ≤ ( ( abs ‘ 𝑎 ) + 1 ) ) ) → 𝑅 ∈ ℝ ) | |
| 70 | 69 | expr | ⊢ ( ( ( 𝑅 ∈ ℝ* ∧ ( ( abs ‘ 𝑎 ) + 1 ) ∈ ℝ ) ∧ -∞ < 𝑅 ) → ( 𝑅 ≤ ( ( abs ‘ 𝑎 ) + 1 ) → 𝑅 ∈ ℝ ) ) |
| 71 | 38 19 68 70 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑅 ≤ ( ( abs ‘ 𝑎 ) + 1 ) → 𝑅 ∈ ℝ ) ) |
| 72 | 59 71 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ¬ ( ( abs ‘ 𝑎 ) + 1 ) < 𝑅 → 𝑅 ∈ ℝ ) ) |
| 73 | 72 | con1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ¬ 𝑅 ∈ ℝ → ( ( abs ‘ 𝑎 ) + 1 ) < 𝑅 ) ) |
| 74 | 73 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) + 1 ) < 𝑅 ) |
| 75 | 53 54 57 74 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) < 𝑅 ) |
| 76 | 6 75 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 77 | 52 50 76 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |