This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3an2i.1 | ⊢ 𝜑 | |
| mp3an2i.2 | ⊢ ( 𝜓 → 𝜒 ) | ||
| mp3an2i.3 | ⊢ ( 𝜓 → 𝜃 ) | ||
| mp3an2i.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | mp3an2i | ⊢ ( 𝜓 → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.1 | ⊢ 𝜑 | |
| 2 | mp3an2i.2 | ⊢ ( 𝜓 → 𝜒 ) | |
| 3 | mp3an2i.3 | ⊢ ( 𝜓 → 𝜃 ) | |
| 4 | mp3an2i.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜓 → 𝜏 ) |