This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The radius of convergence R of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| Assertion | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 4 | ssrab2 | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ | |
| 5 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 6 | 4 5 | sstri | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
| 7 | supxrcl | ⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 9 | 3 8 | eqeltrid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 10 | 1 2 | radcnv0 | ⊢ ( 𝜑 → 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) |
| 11 | supxrub | ⊢ ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) | |
| 12 | 6 10 11 | sylancr | ⊢ ( 𝜑 → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 13 | 12 3 | breqtrrdi | ⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 14 | pnfge | ⊢ ( 𝑅 ∈ ℝ* → 𝑅 ≤ +∞ ) | |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → 𝑅 ≤ +∞ ) |
| 16 | 0xr | ⊢ 0 ∈ ℝ* | |
| 17 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 18 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) | |
| 19 | 16 17 18 | mp2an | ⊢ ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 20 | 9 13 15 19 | syl3anbrc | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |