This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avglt2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 3 | 2times | ⊢ ( 𝐵 ∈ ℂ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 5 | 4 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) |
| 6 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 7 | 2re | ⊢ 2 ∈ ℝ | |
| 8 | 2pos | ⊢ 0 < 2 | |
| 9 | 7 8 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 11 | ltdivmul | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ) ) | |
| 12 | 6 1 10 11 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ) ) |
| 13 | ltadd1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) | |
| 14 | 13 | 3anidm23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) |
| 15 | 5 12 14 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |