This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmshft.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmshft.w | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | ||
| ulmshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| ulmshft.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulmshft.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) | ||
| Assertion | ulmshft | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmshft.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmshft.w | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | |
| 3 | ulmshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ulmshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 5 | ulmshft.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 6 | ulmshft.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) | |
| 7 | 1 2 3 4 5 6 | ulmshftlem | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| 8 | eqid | ⊢ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) | |
| 9 | 3 4 | zaddcld | ⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 10 | 4 | znegcld | ⊢ ( 𝜑 → - 𝐾 ∈ ℤ ) |
| 11 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ 𝑊 ) | |
| 15 | 14 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 16 | eluzsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 18 | 17 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ 𝑍 ) |
| 19 | 11 18 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 20 | 6 19 | fmpt3d | ⊢ ( 𝜑 → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) | |
| 22 | 21 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 23 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑚 ∈ ℤ ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℤ ) |
| 25 | 24 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℂ ) |
| 26 | 4 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐾 ∈ ℂ ) |
| 28 | 25 27 | subnegd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 − - 𝐾 ) = ( 𝑚 + 𝐾 ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) = ( 𝐻 ‘ ( 𝑚 + 𝐾 ) ) ) |
| 30 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
| 31 | 30 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 + 𝐾 ) ) = ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐾 ∈ ℤ ) |
| 33 | eluzadd | ⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑚 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 34 | 22 32 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 35 | 34 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 + 𝐾 ) ∈ 𝑊 ) |
| 36 | fvoveq1 | ⊢ ( 𝑛 = ( 𝑚 + 𝐾 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) | |
| 37 | eqid | ⊢ ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) | |
| 38 | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ∈ V | |
| 39 | 36 37 38 | fvmpt | ⊢ ( ( 𝑚 + 𝐾 ) ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) |
| 40 | 35 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) |
| 41 | 25 27 | pncand | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 + 𝐾 ) − 𝐾 ) = 𝑚 ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 43 | 40 42 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 44 | 29 31 43 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 45 | 44 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 46 | 3 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 47 | 10 | zcnd | ⊢ ( 𝜑 → - 𝐾 ∈ ℂ ) |
| 48 | 46 26 47 | addassd | ⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) + - 𝐾 ) = ( 𝑀 + ( 𝐾 + - 𝐾 ) ) ) |
| 49 | 26 | negidd | ⊢ ( 𝜑 → ( 𝐾 + - 𝐾 ) = 0 ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 + ( 𝐾 + - 𝐾 ) ) = ( 𝑀 + 0 ) ) |
| 51 | 46 | addridd | ⊢ ( 𝜑 → ( 𝑀 + 0 ) = 𝑀 ) |
| 52 | 48 50 51 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) + - 𝐾 ) = 𝑀 ) |
| 53 | 52 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 54 | 53 1 | eqtr4di | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = 𝑍 ) |
| 55 | 54 | mpteq1d | ⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) ) |
| 56 | 5 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 57 | 45 55 56 | 3eqtr4rd | ⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) ) |
| 58 | 2 8 9 10 20 57 | ulmshftlem | ⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| 59 | 7 58 | impbid | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |