This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addcomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | mul12d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addcomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | mul12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) |