This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | ||
| Assertion | pserdv | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | |
| 8 | dvfcn | ⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ | |
| 9 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 10 | 1 2 3 4 5 6 | psercn | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| 11 | cncff | ⊢ ( 𝐹 ∈ ( 𝑆 –cn→ ℂ ) → 𝐹 : 𝑆 ⟶ ℂ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 13 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 14 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 15 | 14 | fdmi | ⊢ dom abs = ℂ |
| 16 | 13 15 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 17 | 5 16 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 18 | 17 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 19 | 9 12 18 | dvbss | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) ⊆ 𝑆 ) |
| 20 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ℂ ⊆ ℂ ) | |
| 21 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 22 | 17 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 23 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 24 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℂ ) | |
| 25 | 18 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 26 | 25 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 27 | 1 2 3 4 5 6 | psercnlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 28 | 27 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 29 | 28 | rpred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 30 | 26 29 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ ) |
| 31 | 0red | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℝ ) | |
| 32 | 25 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 33 | 26 28 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 34 | 31 26 30 32 33 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 35 | 30 34 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ+ ) |
| 36 | 35 | rphalfcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
| 37 | 36 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 38 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) | |
| 39 | 23 24 37 38 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
| 40 | 7 39 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ℂ ) |
| 41 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 42 | 41 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 43 | 42 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 44 | 41 43 | dvres | ⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝑆 ⟶ ℂ ) ∧ ( 𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 45 | 20 21 22 40 44 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 46 | resss | ⊢ ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) | |
| 47 | 45 46 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) ) |
| 48 | dmss | ⊢ ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ dom ( ℂ D 𝐹 ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ dom ( ℂ D 𝐹 ) ) |
| 50 | 1 2 3 4 5 6 | pserdvlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |
| 51 | 1 2 3 4 5 50 | psercnlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ∧ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) ) |
| 52 | 51 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 53 | 52 7 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝐵 ) |
| 54 | 1 2 3 4 5 6 7 | pserdvlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 55 | 54 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
| 56 | dmmptg | ⊢ ( ∀ 𝑦 ∈ 𝐵 Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V → dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = 𝐵 ) | |
| 57 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V | |
| 58 | 57 | a1i | ⊢ ( 𝑦 ∈ 𝐵 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V ) |
| 59 | 56 58 | mprg | ⊢ dom ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = 𝐵 |
| 60 | 55 59 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = 𝐵 ) |
| 61 | 53 60 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ) |
| 62 | 49 61 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ dom ( ℂ D 𝐹 ) ) |
| 63 | 19 62 | eqelssd | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = 𝑆 ) |
| 64 | 63 | feq2d | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : 𝑆 ⟶ ℂ ) ) |
| 65 | 8 64 | mpbii | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) : 𝑆 ⟶ ℂ ) |
| 66 | 65 | feqmptd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑎 ∈ 𝑆 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑎 ) ) ) |
| 67 | ffun | ⊢ ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ → Fun ( ℂ D 𝐹 ) ) | |
| 68 | 8 67 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → Fun ( ℂ D 𝐹 ) ) |
| 69 | funssfv | ⊢ ( ( Fun ( ℂ D 𝐹 ) ∧ ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⊆ ( ℂ D 𝐹 ) ∧ 𝑎 ∈ dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) ) | |
| 70 | 68 47 61 69 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) ) |
| 71 | 54 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ‘ 𝑎 ) = ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) ) |
| 72 | oveq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ↑ 𝑘 ) = ( 𝑎 ↑ 𝑘 ) ) | |
| 73 | 72 | oveq2d | ⊢ ( 𝑦 = 𝑎 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 74 | 73 | sumeq2sdv | ⊢ ( 𝑦 = 𝑎 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 75 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) | |
| 76 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ∈ V | |
| 77 | 74 75 76 | fvmpt | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 78 | 53 77 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 79 | 70 71 78 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ℂ D 𝐹 ) ‘ 𝑎 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) |
| 80 | 79 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝑆 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑎 ) ) = ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) ) |
| 81 | 66 80 | eqtrd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) ) |
| 82 | oveq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 ↑ 𝑘 ) = ( 𝑦 ↑ 𝑘 ) ) | |
| 83 | 82 | oveq2d | ⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 84 | 83 | sumeq2sdv | ⊢ ( 𝑎 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 85 | 84 | cbvmptv | ⊢ ( 𝑎 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑎 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 86 | 81 85 | eqtrdi | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |