This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a convergent point of the infinite series, then X is within the closed disk of radius R centered at zero. Or, by contraposition, the series diverges at any point strictly more than R from the origin. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| radcnvle.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| radcnvle.a | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) | ||
| Assertion | radcnvle | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≤ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 4 | radcnvle.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 5 | radcnvle.a | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) | |
| 6 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 7 | 4 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 8 | 6 7 | sselid | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
| 9 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 10 | 1 2 3 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 11 | 9 10 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑅 < ( abs ‘ 𝑋 ) ) | |
| 13 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑅 ∈ ℝ* ) |
| 14 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 15 | 0xr | ⊢ 0 ∈ ℝ* | |
| 16 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 17 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) | |
| 18 | 15 16 17 | mp2an | ⊢ ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 19 | 10 18 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 20 | 19 | simp2d | ⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 21 | ge0gtmnf | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ) → -∞ < 𝑅 ) | |
| 22 | 11 20 21 | syl2anc | ⊢ ( 𝜑 → -∞ < 𝑅 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → -∞ < 𝑅 ) |
| 24 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
| 25 | 13 24 12 | xrltled | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑅 ≤ ( abs ‘ 𝑋 ) ) |
| 26 | xrre | ⊢ ( ( ( 𝑅 ∈ ℝ* ∧ ( abs ‘ 𝑋 ) ∈ ℝ ) ∧ ( -∞ < 𝑅 ∧ 𝑅 ≤ ( abs ‘ 𝑋 ) ) ) → 𝑅 ∈ ℝ ) | |
| 27 | 13 14 23 25 26 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑅 ∈ ℝ ) |
| 28 | avglt1 | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( abs ‘ 𝑋 ) ∈ ℝ ) → ( 𝑅 < ( abs ‘ 𝑋 ) ↔ 𝑅 < ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) | |
| 29 | 27 14 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( 𝑅 < ( abs ‘ 𝑋 ) ↔ 𝑅 < ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) |
| 30 | 12 29 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑅 < ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 31 | 27 14 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( 𝑅 + ( abs ‘ 𝑋 ) ) ∈ ℝ ) |
| 32 | 31 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ ℝ ) |
| 33 | ssrab2 | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ | |
| 34 | 33 6 | sstri | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
| 35 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 36 | 32 | recnd | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ ℂ ) |
| 37 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 𝑋 ∈ ℂ ) |
| 38 | 0red | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 0 ∈ ℝ ) | |
| 39 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 0 ≤ 𝑅 ) |
| 40 | 38 27 32 39 30 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 0 < ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 41 | 38 32 40 | ltled | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → 0 ≤ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 42 | 32 41 | absidd | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( abs ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) = ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 43 | avglt2 | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( abs ‘ 𝑋 ) ∈ ℝ ) → ( 𝑅 < ( abs ‘ 𝑋 ) ↔ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) < ( abs ‘ 𝑋 ) ) ) | |
| 44 | 27 14 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( 𝑅 < ( abs ‘ 𝑋 ) ↔ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) < ( abs ‘ 𝑋 ) ) ) |
| 45 | 12 44 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) < ( abs ‘ 𝑋 ) ) |
| 46 | 42 45 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( abs ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) < ( abs ‘ 𝑋 ) ) |
| 47 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| 48 | 1 35 36 37 46 47 | radcnvlem3 | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → seq 0 ( + , ( 𝐺 ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) ∈ dom ⇝ ) |
| 49 | fveq2 | ⊢ ( 𝑦 = ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) | |
| 50 | 49 | seqeq3d | ⊢ ( 𝑦 = ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) = seq 0 ( + , ( 𝐺 ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) ) |
| 51 | 50 | eleq1d | ⊢ ( 𝑦 = ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) ∈ dom ⇝ ) ) |
| 52 | fveq2 | ⊢ ( 𝑟 = 𝑦 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 53 | 52 | seqeq3d | ⊢ ( 𝑟 = 𝑦 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ) |
| 54 | 53 | eleq1d | ⊢ ( 𝑟 = 𝑦 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ ) ) |
| 55 | 54 | cbvrabv | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑦 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ } |
| 56 | 51 55 | elrab2 | ⊢ ( ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ↔ ( ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ ℝ ∧ seq 0 ( + , ( 𝐺 ‘ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) ) ∈ dom ⇝ ) ) |
| 57 | 32 48 56 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) |
| 58 | supxrub | ⊢ ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) | |
| 59 | 34 57 58 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 60 | 59 3 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ≤ 𝑅 ) |
| 61 | 32 27 60 | lensymd | ⊢ ( ( 𝜑 ∧ 𝑅 < ( abs ‘ 𝑋 ) ) → ¬ 𝑅 < ( ( 𝑅 + ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 62 | 30 61 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝑅 < ( abs ‘ 𝑋 ) ) |
| 63 | 8 11 62 | xrnltled | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≤ 𝑅 ) |