This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnfldtopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 3 | eqid | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) | |
| 4 | 3 | mopntopon | ⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) ) |
| 5 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 6 | cnfldtset | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopSet ‘ ℂfld ) | |
| 7 | 5 6 | topontopn | ⊢ ( ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) ) |
| 8 | 2 4 7 | mp2b | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) |
| 9 | 1 8 | eqtr4i | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |