This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is within the open disk of radius R centered at zero, then the infinite series converges at X . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| radcnvlt.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| radcnvlt.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | ||
| Assertion | radcnvlt2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 4 | radcnvlt.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 5 | radcnvlt.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 8 | 1 2 4 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 9 | fvco3 | ⊢ ( ( ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
| 11 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ∈ ℂ ) |
| 12 | id | ⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) | |
| 13 | 2fveq3 | ⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) = ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 15 | 14 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 16 | 1 2 3 4 5 15 | radcnvlt1 | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
| 17 | 16 | simprd | ⊢ ( 𝜑 → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
| 18 | 6 7 10 11 17 | abscvgcvg | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |