This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptres.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | ||
| dvmptres.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | ||
| dvmptres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvmptres.t | ⊢ ( 𝜑 → 𝑌 ∈ 𝐽 ) | ||
| Assertion | dvmptres | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptres.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | |
| 6 | dvmptres.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 7 | dvmptres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 8 | dvmptres.t | ⊢ ( 𝜑 → 𝑌 ∈ 𝐽 ) | |
| 9 | 7 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 10 | resttop | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) | |
| 11 | 9 1 10 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 12 | 6 11 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 13 | isopn3i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) | |
| 14 | 12 8 13 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
| 15 | 1 2 3 4 5 6 7 14 | dvmptres2 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |