This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrev.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| fsumrev.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fsumrev.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| fsumrev.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fsumshftm.5 | ⊢ ( 𝑗 = ( 𝑘 + 𝐾 ) → 𝐴 = 𝐵 ) | ||
| Assertion | fsumshftm | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrev.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | fsumrev.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | fsumrev.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | fsumrev.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | fsumshftm.5 | ⊢ ( 𝑗 = ( 𝑘 + 𝐾 ) → 𝐴 = 𝐵 ) | |
| 6 | csbeq1a | ⊢ ( 𝑗 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑗 ⦌ 𝐴 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑚 𝐴 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐴 | |
| 9 | 6 7 8 | cbvsum | ⊢ Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑚 / 𝑗 ⦌ 𝐴 |
| 10 | 1 | znegcld | ⊢ ( 𝜑 → - 𝐾 ∈ ℤ ) |
| 11 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 12 | 8 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑚 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 13 | 6 | eleq1d | ⊢ ( 𝑗 = 𝑚 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑚 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 14 | 12 13 | rspc | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ → ⦋ 𝑚 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 15 | 11 14 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 16 | csbeq1 | ⊢ ( 𝑚 = ( 𝑘 − - 𝐾 ) → ⦋ 𝑚 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 ) | |
| 17 | 10 2 3 15 16 | fsumshft | ⊢ ( 𝜑 → Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑚 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 ) |
| 18 | 2 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 19 | 1 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 20 | 18 19 | negsubd | ⊢ ( 𝜑 → ( 𝑀 + - 𝐾 ) = ( 𝑀 − 𝐾 ) ) |
| 21 | 3 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 22 | 21 19 | negsubd | ⊢ ( 𝜑 → ( 𝑁 + - 𝐾 ) = ( 𝑁 − 𝐾 ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) = ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ) |
| 24 | 23 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 ) |
| 25 | elfzelz | ⊢ ( 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) → 𝑘 ∈ ℤ ) | |
| 26 | 25 | zcnd | ⊢ ( 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) → 𝑘 ∈ ℂ ) |
| 27 | subneg | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( 𝑘 − - 𝐾 ) = ( 𝑘 + 𝐾 ) ) | |
| 28 | 26 19 27 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ) → ( 𝑘 − - 𝐾 ) = ( 𝑘 + 𝐾 ) ) |
| 29 | 28 | csbeq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ) → ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑘 + 𝐾 ) / 𝑗 ⦌ 𝐴 ) |
| 30 | ovex | ⊢ ( 𝑘 + 𝐾 ) ∈ V | |
| 31 | 30 5 | csbie | ⊢ ⦋ ( 𝑘 + 𝐾 ) / 𝑗 ⦌ 𝐴 = 𝐵 |
| 32 | 29 31 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ) → ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 = 𝐵 ) |
| 33 | 32 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) ⦋ ( 𝑘 − - 𝐾 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) 𝐵 ) |
| 34 | 17 24 33 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑚 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) 𝐵 ) |
| 35 | 9 34 | eqtrid | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 − 𝐾 ) ... ( 𝑁 − 𝐾 ) ) 𝐵 ) |