This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzp12 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ V ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ V ) ) |
| 3 | elfvex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ V ) | |
| 4 | eleq1 | ⊢ ( 𝐾 = 𝑀 → ( 𝐾 ∈ V ↔ 𝑀 ∈ V ) ) | |
| 5 | 3 4 | syl5ibrcom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 = 𝑀 → 𝐾 ∈ V ) ) |
| 6 | 5 | imdistani | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 = 𝑀 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ V ) ) |
| 7 | elex | ⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝐾 ∈ V ) | |
| 8 | 7 | anim2i | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ V ) ) |
| 9 | 6 8 | jaodan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ V ) ) |
| 10 | fzpred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ∈ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 12 | elun | ⊢ ( 𝐾 ∈ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ↔ ( 𝐾 ∈ { 𝑀 } ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ { 𝑀 } ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 14 | elsng | ⊢ ( 𝐾 ∈ V → ( 𝐾 ∈ { 𝑀 } ↔ 𝐾 = 𝑀 ) ) | |
| 15 | 14 | orbi1d | ⊢ ( 𝐾 ∈ V → ( ( 𝐾 ∈ { 𝑀 } ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 16 | 13 15 | sylan9bb | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ V ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 17 | 2 9 16 | pm5.21nd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |