This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercnlem2.i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) | ||
| Assertion | psercnlem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ∧ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercnlem2.i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) | |
| 7 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 8 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 9 | 8 | fdmi | ⊢ dom abs = ℂ |
| 10 | 7 9 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 11 | 5 10 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 14 | 13 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 15 | 13 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 16 | 6 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | 6 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 19 | 18 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 20 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑀 ) ) ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑀 ) ) ) |
| 22 | 14 15 16 21 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) |
| 23 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 24 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) ) ) | |
| 25 | 8 23 24 | mp2b | ⊢ ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) ) |
| 26 | 13 22 25 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ) |
| 27 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 28 | 27 | cnbl0 | ⊢ ( 𝑀 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 29 | 19 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 30 | 26 29 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
| 31 | icossicc | ⊢ ( 0 [,) 𝑀 ) ⊆ ( 0 [,] 𝑀 ) | |
| 32 | imass2 | ⊢ ( ( 0 [,) 𝑀 ) ⊆ ( 0 [,] 𝑀 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) | |
| 33 | 31 32 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 34 | 29 33 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 35 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 36 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 38 | 35 37 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 39 | 6 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 40 | df-ico | ⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 41 | df-icc | ⊢ [,] = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣 ) } ) | |
| 42 | xrlelttr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅 ) → 𝑧 < 𝑅 ) ) | |
| 43 | 40 41 42 | ixxss2 | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅 ) → ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) ) |
| 44 | 38 39 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) ) |
| 45 | imass2 | ⊢ ( ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
| 47 | 46 5 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) |
| 48 | 30 34 47 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ∧ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) ) |