This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| Assertion | pserdvlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 8 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 9 | 8 | fdmi | ⊢ dom abs = ℂ |
| 10 | 7 9 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 11 | 5 10 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
| 14 | 13 | abscld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 15 | 1 2 3 4 5 6 | psercnlem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
| 16 | 15 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
| 17 | 16 | rpred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 18 | 14 17 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ ) |
| 19 | 0red | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℝ ) | |
| 20 | 13 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
| 21 | 14 16 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 22 | 19 14 18 20 21 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 < ( ( abs ‘ 𝑎 ) + 𝑀 ) ) |
| 23 | 18 22 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) + 𝑀 ) ∈ ℝ+ ) |
| 24 | 23 | rphalfcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
| 25 | 15 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
| 26 | avglt1 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) | |
| 27 | 14 17 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
| 28 | 25 27 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
| 29 | 18 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ ) |
| 30 | 29 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
| 31 | 17 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 32 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 33 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 34 | 32 33 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 36 | avglt2 | ⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) | |
| 37 | 14 17 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
| 38 | 25 37 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) |
| 39 | 15 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 40 | 30 31 35 38 39 | xrlttrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
| 41 | 24 28 40 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |