This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmres.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmres.w | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| ulmres.m | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| ulmres.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| Assertion | ulmres | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmres.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmres.w | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | ulmres.m | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 4 | ulmres.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 5 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 6 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 7 | 5 6 | jca | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ) |
| 9 | ulmscl | ⊢ ( ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 10 | ulmcl | ⊢ ( ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 11 | 9 10 | jca | ⊢ ( ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ) |
| 13 | 3 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 15 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝑀 ∈ ℤ ) |
| 17 | 1 | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 19 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 20 | 14 19 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝑁 ∈ ℤ ) |
| 21 | 2 | rexuz3 | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 23 | 18 22 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 24 | 23 | ralbidv | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 25 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 26 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 27 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 29 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝑆 ∈ V ) | |
| 30 | 1 16 25 26 27 28 29 | ulm2 | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 31 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 32 | 14 31 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 | 32 2 1 | 3sstr4g | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → 𝑊 ⊆ 𝑍 ) |
| 34 | 25 33 | fssresd | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ↾ 𝑊 ) : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 35 | fvres | ⊢ ( 𝑘 ∈ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 36 | 35 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑊 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝐹 ↾ 𝑊 ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 38 | 2 20 34 37 27 28 29 | ulm2 | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 39 | 24 30 38 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| 40 | 39 | ex | ⊢ ( 𝜑 → ( ( 𝑆 ∈ V ∧ 𝐺 : 𝑆 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) ) |
| 41 | 8 12 40 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ( 𝐹 ↾ 𝑊 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |