This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sumss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| sumss.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | ||
| fsumss.4 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| Assertion | fsumss | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sumss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | sumss.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | |
| 4 | fsumss.4 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐴 ⊆ 𝐵 ) |
| 6 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐵 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 7 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐵 = ∅ ) ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 9 | 0ss | ⊢ ∅ ⊆ ( ℤ≥ ‘ 0 ) | |
| 10 | 8 9 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐵 ⊆ ( ℤ≥ ‘ 0 ) ) |
| 11 | 5 6 7 10 | sumss | ⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 12 | 11 | ex | ⊢ ( 𝜑 → ( 𝐵 = ∅ → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 13 | cnvimass | ⊢ ( ◡ 𝑓 “ 𝐴 ) ⊆ dom 𝑓 | |
| 14 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) | |
| 15 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) |
| 17 | 13 16 | fssdm | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 18 | 16 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 19 | elpreima | ⊢ ( 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 21 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 22 | 21 | ex | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 23 | 22 | adantrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 24 | 20 23 | sylbid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 26 | 2 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 28 | eldif | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) | |
| 29 | 0cn | ⊢ 0 ∈ ℂ | |
| 30 | 3 29 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 31 | 28 30 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 32 | 31 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 33 | 27 32 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 34 | 33 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 36 | 35 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
| 37 | 25 36 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
| 38 | eldifi | ⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | |
| 39 | 38 21 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 40 | eldifn | ⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) |
| 42 | 38 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 43 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 44 | 42 43 | mpbirand | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
| 45 | 41 44 | mtbid | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 46 | 39 45 | eldifd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) ) |
| 47 | difss | ⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 | |
| 48 | resmpt | ⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ) | |
| 49 | 47 48 | ax-mp | ⊢ ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) |
| 50 | 49 | fveq1i | ⊢ ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 51 | fvres | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 52 | 50 51 | eqtr3id | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 53 | 46 52 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 54 | c0ex | ⊢ 0 ∈ V | |
| 55 | 54 | elsn2 | ⊢ ( 𝐶 ∈ { 0 } ↔ 𝐶 = 0 ) |
| 56 | 3 55 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ { 0 } ) |
| 57 | 56 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 0 } ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 0 } ) |
| 59 | 58 46 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 0 } ) |
| 60 | elsni | ⊢ ( ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 0 } → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 62 | 53 61 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 63 | fzssuz | ⊢ ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) | |
| 64 | 63 | a1i | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
| 65 | 17 37 62 64 | sumss | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 66 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 67 | 66 | resmptd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 68 | 67 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 69 | fvres | ⊢ ( 𝑚 ∈ 𝐴 → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) | |
| 70 | 69 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 71 | 68 70 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 72 | 71 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 73 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 74 | fzfid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ∈ Fin ) | |
| 75 | 74 16 | fisuppfi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ∈ Fin ) |
| 76 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) | |
| 77 | 14 76 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) |
| 78 | f1ores | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ∧ ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) | |
| 79 | 77 17 78 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 80 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) | |
| 81 | 14 80 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) |
| 82 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 83 | foimacnv | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) | |
| 84 | 81 82 83 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) |
| 85 | 84 | f1oeq3d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) ) |
| 86 | 79 85 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 87 | fvres | ⊢ ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) | |
| 88 | 87 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 89 | 82 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐵 ) |
| 90 | 35 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 91 | 89 90 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 92 | 73 75 86 88 91 | fsumf1o | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 93 | 72 92 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 94 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) | |
| 95 | 73 74 14 94 90 | fsumf1o | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 96 | 65 93 95 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 97 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐶 | |
| 98 | sumfc | ⊢ Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐵 𝐶 | |
| 99 | 96 97 98 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 100 | 99 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 101 | 100 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 102 | 101 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 103 | fz1f1o | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) | |
| 104 | 4 103 | syl | ⊢ ( 𝜑 → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) |
| 105 | 12 102 104 | mpjaod | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |