This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvexp2 | ⊢ ( 𝑁 ∈ ℕ0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | dvexp | ⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) | |
| 3 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 4 | 3 | neneqd | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 5 | 4 | iffalsed | ⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) = ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
| 7 | 2 6 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑥 ↑ 𝑁 ) = ( 𝑥 ↑ 0 ) ) | |
| 9 | exp0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) | |
| 10 | 8 9 | sylan9eq | ⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑁 ) = 1 ) |
| 11 | 10 | mpteq2dva | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 12 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( ℂ × { 1 } ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( ℂ D ( ℂ × { 1 } ) ) ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | dvconst | ⊢ ( 1 ∈ ℂ → ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) |
| 18 | 14 17 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( ℂ × { 0 } ) ) |
| 19 | fconstmpt | ⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 21 | iftrue | ⊢ ( 𝑁 = 0 → if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) = 0 ) | |
| 22 | 21 | mpteq2dv | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 23 | 20 22 | eqtr4d | ⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| 24 | 7 23 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| 25 | 1 24 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |