This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite sum of complex numbers A ( k ) . (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 4 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 6 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 7 | 3 5 1 2 6 | fsumcllem | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |