This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 and fsump1i , which should make our notation clear and from which, along with closure fsumcl , we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumser.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| fsumser.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| fsumser.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | fsumser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumser.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 2 | fsumser.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | fsumser.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 4 | eleq1w | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 5 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | 4 5 | ifbieq1d | ⊢ ( 𝑚 = 𝑘 → if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 7 | eqid | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) | |
| 8 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 8 9 | ifex | ⊢ if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ V |
| 11 | 6 7 10 | fvmpt | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 12 | 1 | ifeq1da | ⊢ ( 𝜑 → if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , 𝐴 , 0 ) ) |
| 13 | 11 12 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , 𝐴 , 0 ) ) |
| 14 | ssidd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 15 | 13 2 3 14 | fsumsers | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( seq 𝑀 ( + , ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ) ‘ 𝑁 ) ) |
| 16 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 17 | 16 11 | syl | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 18 | iftrue | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 19 | 17 18 | eqtrd | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 2 20 | seqfveq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 22 | 15 21 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |