This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is a region contained in a circle of radius M < R , then the sequence of partial sums of the infinite series converges uniformly on S . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| pserulm.h | ⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | ||
| pserulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| pserulm.l | ⊢ ( 𝜑 → 𝑀 < 𝑅 ) | ||
| pserulm.y | ⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) | ||
| Assertion | pserulm | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | pserulm.h | ⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | |
| 6 | pserulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 7 | pserulm.l | ⊢ ( 𝜑 → 𝑀 < 𝑅 ) | |
| 8 | pserulm.y | ⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 10 | 0xr | ⊢ 0 ∈ ℝ* | |
| 11 | 6 | rexrd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 12 | icc0 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝜑 → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( 0 [,] 𝑀 ) = ∅ ) |
| 15 | 14 | imaeq2d | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ( ◡ abs “ ∅ ) ) |
| 16 | ima0 | ⊢ ( ◡ abs “ ∅ ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ∅ ) |
| 18 | 9 17 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ∅ ) |
| 19 | ss0 | ⊢ ( 𝑆 ⊆ ∅ → 𝑆 = ∅ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 = ∅ ) |
| 21 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 22 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 23 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 24 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 25 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs | |
| 26 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 27 | 26 | fdmi | ⊢ dom abs = ℂ |
| 28 | 25 27 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ |
| 29 | 8 28 | sstrdi | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 30 | 29 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 31 | 1 24 30 | psergf | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 32 | 31 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 33 | 21 23 32 | serf | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) |
| 34 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 35 | 34 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 36 | 35 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) |
| 37 | cnex | ⊢ ℂ ∈ V | |
| 38 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 39 | 29 37 38 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 41 | elmapg | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) | |
| 42 | 37 40 41 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
| 43 | 36 42 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 44 | 43 5 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 45 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 46 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
| 47 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 48 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) ) | |
| 49 | 26 47 48 | mp2b | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
| 50 | 46 49 | sylib | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
| 51 | 50 | simprd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) |
| 52 | 0re | ⊢ 0 ∈ ℝ | |
| 53 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 54 | elicc2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) | |
| 55 | 52 53 54 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) |
| 56 | 51 55 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) |
| 57 | 56 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 58 | 57 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ* ) |
| 59 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
| 60 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 61 | 1 3 4 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 62 | 60 61 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 64 | 56 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 65 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
| 66 | 58 59 63 64 65 | xrlelttrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) < 𝑅 ) |
| 67 | 1 24 4 30 66 | radcnvlt2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 68 | 21 23 45 32 67 | isumcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 69 | 68 2 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 70 | 21 22 44 69 | ulm0 | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 71 | 20 70 | syldan | ⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 72 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 73 | 72 21 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 74 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) | |
| 75 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 76 | 75 | fveq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 77 | 76 | cbvmptv | ⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 78 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) | |
| 79 | 78 | mpteq2dv | ⊢ ( 𝑚 = 𝑘 → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 80 | 77 79 | eqtrid | ⊢ ( 𝑚 = 𝑘 → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 81 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 ) | |
| 82 | 81 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 83 | 39 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑆 ∈ V ) |
| 84 | 83 | mptexd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
| 85 | 74 80 82 84 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 86 | 40 73 85 | seqof | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 87 | 86 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
| 88 | 87 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) |
| 89 | 0z | ⊢ 0 ∈ ℤ | |
| 90 | seqfn | ⊢ ( 0 ∈ ℤ → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) | |
| 91 | 89 90 | ax-mp | ⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) |
| 92 | 21 | fneq2i | ⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
| 93 | 91 92 | mpbir | ⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 |
| 94 | dffn5 | ⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) | |
| 95 | 93 94 | mpbi | ⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
| 96 | 88 5 95 | 3eqtr4g | ⊢ ( 𝜑 → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
| 97 | 96 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
| 98 | 0zd | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 0 ∈ ℤ ) | |
| 99 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑆 ∈ V ) |
| 100 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 101 | 29 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ℂ ) |
| 102 | 1 100 101 | psergf | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑤 ) : ℕ0 ⟶ ℂ ) |
| 103 | 102 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
| 104 | 103 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
| 105 | 104 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) |
| 106 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 107 | elmapg | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) | |
| 108 | 37 106 107 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) |
| 109 | 105 108 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 110 | 109 | fmpttd | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 112 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 113 | 26 37 112 | mp2an | ⊢ abs ∈ V |
| 114 | fvex | ⊢ ( 𝐺 ‘ 𝑀 ) ∈ V | |
| 115 | 113 114 | coex | ⊢ ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V |
| 116 | 115 | a1i | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V ) |
| 117 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 118 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 119 | 118 | recnd | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℂ ) |
| 120 | 1 117 119 | psergf | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
| 121 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) | |
| 122 | 26 120 121 | sylancr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) |
| 123 | 122 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 124 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ ℂ ) |
| 125 | simprr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) | |
| 126 | 124 125 | sseldd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ℂ ) |
| 127 | simprl | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑘 ∈ ℕ0 ) | |
| 128 | 126 127 | expcld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 129 | 128 | abscld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ∈ ℝ ) |
| 130 | 119 | adantr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℂ ) |
| 131 | 130 127 | expcld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 ↑ 𝑘 ) ∈ ℂ ) |
| 132 | 131 | abscld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ∈ ℝ ) |
| 133 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 134 | 133 127 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 135 | 134 | abscld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 136 | 134 | absge0d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 137 | 126 | abscld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 138 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℝ ) |
| 139 | 126 | absge0d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ 𝑧 ) ) |
| 140 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝑧 ) ) | |
| 141 | 140 | breq1d | ⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ 𝑦 ) ≤ 𝑀 ↔ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) |
| 142 | 64 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 143 | 142 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
| 144 | 141 143 125 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ≤ 𝑀 ) |
| 145 | leexp1a | ⊢ ( ( ( ( abs ‘ 𝑧 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( abs ‘ 𝑧 ) ∧ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) | |
| 146 | 137 138 127 139 144 145 | syl32anc | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) |
| 147 | 126 127 | absexpd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ) |
| 148 | 130 127 | absexpd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) ) |
| 149 | absid | ⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) | |
| 150 | 6 149 | sylan | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 151 | 150 | adantr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 152 | 151 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) = ( 𝑀 ↑ 𝑘 ) ) |
| 153 | 148 152 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( 𝑀 ↑ 𝑘 ) ) |
| 154 | 146 147 153 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ≤ ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) |
| 155 | 129 132 135 136 154 | lemul2ad | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 156 | 134 128 | absmuld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 157 | 134 131 | absmuld | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 158 | 155 156 157 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 159 | 39 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ∈ V ) |
| 160 | 159 | mptexd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
| 161 | 74 80 127 160 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
| 162 | 161 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 163 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 164 | 163 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 165 | eqid | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) | |
| 166 | fvex | ⊢ ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ∈ V | |
| 167 | 164 165 166 | fvmpt | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 168 | 167 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 169 | 1 | pserval2 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 170 | 126 127 169 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 171 | 162 168 170 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 172 | 171 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 173 | 120 | adantr | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
| 174 | fvco3 | ⊢ ( ( ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) | |
| 175 | 173 127 174 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) |
| 176 | 1 | pserval2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
| 177 | 130 127 176 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
| 178 | 177 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 179 | 175 178 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
| 180 | 158 172 179 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ) |
| 181 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 < 𝑅 ) |
| 182 | 150 181 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) < 𝑅 ) |
| 183 | id | ⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) | |
| 184 | 2fveq3 | ⊢ ( 𝑖 = 𝑚 → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) | |
| 185 | 183 184 | oveq12d | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
| 186 | 185 | cbvmptv | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
| 187 | 1 117 4 119 182 186 | radcnvlt1 | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) ) |
| 188 | 187 | simprd | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) |
| 189 | 21 98 99 111 116 123 180 188 | mtest | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 190 | 97 189 | eqeltrd | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 191 | simpr | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) | |
| 192 | ulmcl | ⊢ ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝑓 : 𝑆 ⟶ ℂ ) | |
| 193 | 192 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 : 𝑆 ⟶ ℂ ) |
| 194 | 193 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 195 | 0zd | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 196 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 197 | 31 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
| 198 | 197 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
| 199 | 44 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 200 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 201 | seqex | ⊢ seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V | |
| 202 | 201 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V ) |
| 203 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 204 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 205 | 204 | mptexd | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) |
| 206 | 5 | fvmpt2 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 207 | 203 205 206 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 208 | 207 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) ) |
| 209 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑦 ∈ 𝑆 ) | |
| 210 | fvex | ⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V | |
| 211 | eqid | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | |
| 212 | 211 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 213 | 209 210 212 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 214 | 208 213 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 215 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) | |
| 216 | 21 195 199 200 202 214 215 | ulmclm | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ⇝ ( 𝑓 ‘ 𝑦 ) ) |
| 217 | 21 195 196 198 216 | isumclim | ⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 218 | 217 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 219 | 2 218 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐹 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 220 | 194 219 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = 𝐹 ) |
| 221 | 191 220 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 222 | 221 | ex | ⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
| 223 | 222 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
| 224 | eldmg | ⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ) | |
| 225 | 224 | ibi | ⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
| 226 | 223 225 | impel | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 227 | 190 226 | syldan | ⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 228 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 229 | 71 227 6 228 | ltlecasei | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |