This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| Assertion | pserval2 | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑁 ) = ( ( 𝐴 ‘ 𝑁 ) · ( 𝑋 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | 1 | pserval | ⊢ ( 𝑋 ∈ ℂ → ( 𝐺 ‘ 𝑋 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝑋 ∈ ℂ → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑁 ) = ( ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) ) ‘ 𝑁 ) ) |
| 4 | fveq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑁 ) ) | |
| 5 | oveq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝑋 ↑ 𝑦 ) = ( 𝑋 ↑ 𝑁 ) ) | |
| 6 | 4 5 | oveq12d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑁 ) · ( 𝑋 ↑ 𝑁 ) ) ) |
| 7 | eqid | ⊢ ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) ) | |
| 8 | ovex | ⊢ ( ( 𝐴 ‘ 𝑁 ) · ( 𝑋 ↑ 𝑁 ) ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑦 ) · ( 𝑋 ↑ 𝑦 ) ) ) ‘ 𝑁 ) = ( ( 𝐴 ‘ 𝑁 ) · ( 𝑋 ↑ 𝑁 ) ) ) |
| 10 | 3 9 | sylan9eq | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑁 ) = ( ( 𝐴 ‘ 𝑁 ) · ( 𝑋 ↑ 𝑁 ) ) ) |