This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A double syllogism inference. For an implication-only version, see syl2imc . (Contributed by NM, 17-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl2an.2 | ⊢ ( 𝜏 → 𝜒 ) | ||
| syl2an.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | syl2anr | ⊢ ( ( 𝜏 ∧ 𝜑 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl2an.2 | ⊢ ( 𝜏 → 𝜒 ) | |
| 3 | syl2an.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝜏 ∧ 𝜑 ) → 𝜃 ) |