This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a sequence of differentiable functions on X which converge pointwise to G , and the derivatives of F ( n ) converge uniformly to H , then G is differentiable with derivative H . (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | ||
| ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | ||
| ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | ||
| Assertion | ulmdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 3 | ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | |
| 5 | ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 6 | ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | |
| 7 | ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | |
| 8 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 10 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 12 | biidd | ⊢ ( 𝑘 = 𝑀 → ( 𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆 ) ) | |
| 13 | 1 2 3 4 5 6 7 | ulmdvlem2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) |
| 14 | dvbsss | ⊢ dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝑆 | |
| 15 | 13 14 | eqsstrrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑋 ⊆ 𝑆 ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆 ) |
| 17 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | 18 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 20 | 12 16 19 | rspcdva | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 21 | 11 5 20 | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) ⊆ 𝑋 ) |
| 22 | 1 2 3 4 5 6 7 | ulmdvlem3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ( 𝑆 D 𝐺 ) ( 𝐻 ‘ 𝑧 ) ) |
| 23 | vex | ⊢ 𝑧 ∈ V | |
| 24 | fvex | ⊢ ( 𝐻 ‘ 𝑧 ) ∈ V | |
| 25 | 23 24 | breldm | ⊢ ( 𝑧 ( 𝑆 D 𝐺 ) ( 𝐻 ‘ 𝑧 ) → 𝑧 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 26 | 22 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 27 | 21 26 | eqelssd | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 28 | 27 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 29 | 9 28 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 30 | 29 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) Fn 𝑋 ) |
| 31 | ulmcl | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 → 𝐻 : 𝑋 ⟶ ℂ ) | |
| 32 | 7 31 | syl | ⊢ ( 𝜑 → 𝐻 : 𝑋 ⟶ ℂ ) |
| 33 | 32 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝑋 ) |
| 34 | 9 | ffund | ⊢ ( 𝜑 → Fun ( 𝑆 D 𝐺 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → Fun ( 𝑆 D 𝐺 ) ) |
| 36 | funbrfv | ⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑧 ( 𝑆 D 𝐺 ) ( 𝐻 ‘ 𝑧 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) ) | |
| 37 | 35 22 36 | sylc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
| 38 | 30 33 37 | eqfnfvd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = 𝐻 ) |