This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | dvmptcmul | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 7 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℂ ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐶 ∈ ℂ ) |
| 9 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℂ ) | |
| 10 | 1 5 | dvmptc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 11 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 12 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 13 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 15 | 11 14 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 16 | dvbsss | ⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ 𝑆 | |
| 17 | 15 16 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 18 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 19 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 20 | 19 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 21 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 22 | 1 21 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 23 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 25 | topontop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 27 | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 28 | 24 27 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 29 | 17 28 | sseqtrd | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 30 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 31 | 30 | ntrss2 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 32 | 26 29 31 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 33 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 34 | 22 33 17 18 19 | dvbssntr | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 35 | 15 34 | eqsstrrd | ⊢ ( 𝜑 → 𝑋 ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 36 | 32 35 | eqssd | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) = 𝑋 ) |
| 37 | 1 8 9 10 17 18 19 36 | dvmptres2 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 38 | 1 6 7 37 2 3 4 | dvmptmul | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 0 · 𝐴 ) + ( 𝐵 · 𝐶 ) ) ) ) |
| 39 | 2 | mul02d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 · 𝐴 ) = 0 ) |
| 40 | 39 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 0 · 𝐴 ) + ( 𝐵 · 𝐶 ) ) = ( 0 + ( 𝐵 · 𝐶 ) ) ) |
| 41 | 1 2 3 4 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 42 | 41 6 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 43 | 42 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 + ( 𝐵 · 𝐶 ) ) = ( 𝐵 · 𝐶 ) ) |
| 44 | 41 6 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 45 | 40 43 44 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 0 · 𝐴 ) + ( 𝐵 · 𝐶 ) ) = ( 𝐶 · 𝐵 ) ) |
| 46 | 45 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 0 · 𝐴 ) + ( 𝐵 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐵 ) ) ) |
| 47 | 38 46 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐶 · 𝐵 ) ) ) |