This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmetdval.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| Assertion | cnmetdval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmetdval.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| 2 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | opelxpi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ℂ × ℂ ) ) | |
| 4 | fvco3 | ⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ 〈 𝐴 , 𝐵 〉 ∈ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 6 | df-ov | ⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 7 | 1 | fveq1i | ⊢ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 8 | 6 7 | eqtri | ⊢ ( 𝐴 𝐷 𝐵 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 9 | df-ov | ⊢ ( 𝐴 − 𝐵 ) = ( − ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 10 | 9 | fveq2i | ⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 11 | 5 8 10 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |