This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptfsum.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| dvmptfsum.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvmptfsum.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvmptfsum.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) | ||
| dvmptfsum.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| dvmptfsum.a | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptfsum.b | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) | ||
| dvmptfsum.d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| Assertion | dvmptfsum | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptfsum.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 2 | dvmptfsum.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | dvmptfsum.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 4 | dvmptfsum.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) | |
| 5 | dvmptfsum.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 6 | dvmptfsum.a | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 7 | dvmptfsum.b | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) | |
| 8 | dvmptfsum.d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 9 | ssid | ⊢ 𝐼 ⊆ 𝐼 | |
| 10 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) | |
| 11 | sumeq1 | ⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ∅ 𝐴 ) | |
| 12 | 11 | mpteq2dv | ⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) ) |
| 14 | sumeq1 | ⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ∅ 𝐵 ) | |
| 15 | 14 | mpteq2dv | ⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
| 17 | 10 16 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑎 = ∅ → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) ) |
| 19 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼 ) ) | |
| 20 | sumeq1 | ⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝑏 𝐴 ) | |
| 21 | 20 | mpteq2dv | ⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) |
| 22 | 21 | oveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) ) |
| 23 | sumeq1 | ⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝑏 𝐵 ) | |
| 24 | 23 | mpteq2dv | ⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
| 26 | 19 25 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) ) |
| 28 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐼 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) | |
| 29 | sumeq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) | |
| 30 | 29 | mpteq2dv | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) ) |
| 32 | sumeq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) | |
| 33 | 32 | mpteq2dv | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
| 34 | 31 33 | eqeq12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) |
| 35 | 28 34 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 37 | sseq1 | ⊢ ( 𝑎 = 𝐼 → ( 𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼 ) ) | |
| 38 | sumeq1 | ⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝐼 𝐴 ) | |
| 39 | 38 | mpteq2dv | ⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) |
| 40 | 39 | oveq2d | ⊢ ( 𝑎 = 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) ) |
| 41 | sumeq1 | ⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝐼 𝐵 ) | |
| 42 | 41 | mpteq2dv | ⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |
| 43 | 40 42 | eqeq12d | ⊢ ( 𝑎 = 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
| 44 | 37 43 | imbi12d | ⊢ ( 𝑎 = 𝐼 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
| 45 | 44 | imbi2d | ⊢ ( 𝑎 = 𝐼 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) ) |
| 46 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℂ ) | |
| 47 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 48 | 3 47 | dvmptc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 0 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 49 | 2 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 50 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 51 | 3 50 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 52 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 53 | 49 51 52 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 54 | 1 53 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 55 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑋 ∈ 𝐽 ) → 𝑋 ⊆ 𝑆 ) | |
| 56 | 54 4 55 | syl2anc | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 57 | 3 46 46 48 56 1 2 4 | dvmptres | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 58 | sum0 | ⊢ Σ 𝑖 ∈ ∅ 𝐴 = 0 | |
| 59 | 58 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 60 | 59 | oveq2i | ⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 61 | sum0 | ⊢ Σ 𝑖 ∈ ∅ 𝐵 = 0 | |
| 62 | 61 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 63 | 57 60 62 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
| 64 | 63 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
| 65 | ssun1 | ⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 66 | sstr | ⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝑏 ⊆ 𝐼 ) | |
| 67 | 65 66 | mpan | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑏 ⊆ 𝐼 ) |
| 68 | 67 | imim1i | ⊢ ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
| 69 | simpll | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝜑 ) | |
| 70 | 69 3 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 71 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝐼 ∈ Fin ) |
| 72 | 67 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ⊆ 𝐼 ) |
| 73 | 71 72 | ssfid | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ∈ Fin ) |
| 74 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝜑 ) | |
| 75 | 72 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑖 ∈ 𝐼 ) |
| 76 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑎 ∈ 𝑋 ) | |
| 77 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) | |
| 78 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 | |
| 79 | 78 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 80 | 77 79 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 81 | eleq1w | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ 𝑋 ↔ 𝑎 ∈ 𝑋 ) ) | |
| 82 | 81 | 3anbi3d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) ) |
| 83 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 85 | 82 84 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) ) |
| 86 | 80 85 6 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 87 | 74 75 76 86 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 88 | 73 87 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 89 | 88 | adantlrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 90 | sumex | ⊢ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V | |
| 91 | 90 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 92 | nfcv | ⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐴 | |
| 93 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 94 | 93 78 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 95 | 83 | sumeq2sdv | ⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐴 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 96 | 92 94 95 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 97 | 96 | oveq2i | ⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 98 | nfcv | ⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐵 | |
| 99 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 | |
| 100 | 93 99 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 101 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 102 | 101 | sumeq2sdv | ⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐵 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 103 | 98 100 102 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 104 | 97 103 | eqeq12i | ⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ↔ ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 105 | 104 | biimpi | ⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 106 | 105 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 107 | simplll | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝜑 ) | |
| 108 | ssun2 | ⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 109 | sstr | ⊢ ( ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → { 𝑐 } ⊆ 𝐼 ) | |
| 110 | 108 109 | mpan | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → { 𝑐 } ⊆ 𝐼 ) |
| 111 | vex | ⊢ 𝑐 ∈ V | |
| 112 | 111 | snss | ⊢ ( 𝑐 ∈ 𝐼 ↔ { 𝑐 } ⊆ 𝐼 ) |
| 113 | 110 112 | sylibr | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑐 ∈ 𝐼 ) |
| 114 | 113 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
| 115 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ 𝑋 ) | |
| 116 | 6 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) |
| 117 | 116 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐴 ∈ ℂ ) |
| 118 | 117 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ ) |
| 119 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 | |
| 120 | 119 | nfel1 | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 121 | csbeq1a | ⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) | |
| 122 | 121 | eleq1d | ⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 123 | 79 120 84 122 | rspc2 | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 124 | 123 | ancoms | ⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 125 | 118 124 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 126 | 107 114 115 125 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 127 | 126 | adantlrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 128 | 7 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐵 ∈ ℂ ) |
| 129 | 128 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐵 ∈ ℂ ) |
| 130 | 129 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ ) |
| 131 | 99 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 132 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 | |
| 133 | 132 | nfel1 | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 134 | 101 | eleq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 135 | csbeq1a | ⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 136 | 135 | eleq1d | ⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 137 | 131 133 134 136 | rspc2 | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 138 | 137 | ancoms | ⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 139 | 130 138 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 140 | 107 114 115 139 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 141 | 140 | adantlrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 142 | 113 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑐 ∈ 𝐼 ) |
| 143 | nfv | ⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) | |
| 144 | nfcv | ⊢ Ⅎ 𝑖 𝑆 | |
| 145 | nfcv | ⊢ Ⅎ 𝑖 D | |
| 146 | nfcv | ⊢ Ⅎ 𝑖 𝑋 | |
| 147 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 | |
| 148 | 146 147 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
| 149 | 144 145 148 | nfov | ⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
| 150 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 | |
| 151 | 146 150 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
| 152 | 149 151 | nfeq | ⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
| 153 | 143 152 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 154 | eleq1w | ⊢ ( 𝑖 = 𝑐 → ( 𝑖 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼 ) ) | |
| 155 | 154 | anbi2d | ⊢ ( 𝑖 = 𝑐 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ) ) |
| 156 | csbeq1a | ⊢ ( 𝑖 = 𝑐 → 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) | |
| 157 | 156 | mpteq2dv | ⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
| 158 | 157 | oveq2d | ⊢ ( 𝑖 = 𝑐 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) ) |
| 159 | csbeq1a | ⊢ ( 𝑖 = 𝑐 → 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) | |
| 160 | 159 | mpteq2dv | ⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 161 | 158 160 | eqeq12d | ⊢ ( 𝑖 = 𝑐 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) |
| 162 | 155 161 | imbi12d | ⊢ ( 𝑖 = 𝑐 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) ) |
| 163 | 153 162 8 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 164 | nfcv | ⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 | |
| 165 | nfcv | ⊢ Ⅎ 𝑥 𝑐 | |
| 166 | 165 78 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 167 | 83 | csbeq2dv | ⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 168 | 164 166 167 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 169 | 168 | oveq2i | ⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 170 | nfcv | ⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 | |
| 171 | 165 99 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 172 | 101 | csbeq2dv | ⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 173 | 170 171 172 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 174 | 163 169 173 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 175 | 69 142 174 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 176 | 70 89 91 106 127 141 175 | dvmptadd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 177 | nfcv | ⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 | |
| 178 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑏 ∪ { 𝑐 } ) | |
| 179 | 178 78 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 180 | 83 | sumeq2sdv | ⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 181 | 177 179 180 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 182 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ¬ 𝑐 ∈ 𝑏 ) | |
| 183 | disjsn | ⊢ ( ( 𝑏 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑏 ) | |
| 184 | 182 183 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∩ { 𝑐 } ) = ∅ ) |
| 185 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) = ( 𝑏 ∪ { 𝑐 } ) ) | |
| 186 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) | |
| 187 | 71 186 | ssfid | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ∈ Fin ) |
| 188 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝜑 ) | |
| 189 | 186 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑖 ∈ 𝐼 ) |
| 190 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑎 ∈ 𝑋 ) | |
| 191 | 188 189 190 86 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 192 | 184 185 187 191 | fsumsplit | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 193 | sumsns | ⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) | |
| 194 | 111 126 193 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 195 | 194 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 196 | 192 195 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 197 | 196 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 198 | 181 197 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 199 | 198 | adantrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 200 | 199 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 201 | nfcv | ⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 | |
| 202 | 178 99 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 203 | 101 | sumeq2sdv | ⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 204 | 201 202 203 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 205 | 77 131 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 206 | 82 134 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 207 | 205 206 7 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 208 | 188 189 190 207 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 209 | 184 185 187 208 | fsumsplit | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 210 | sumsns | ⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 211 | 111 140 210 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 212 | 211 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 213 | 209 212 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 214 | 213 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 215 | 204 214 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 216 | 215 | adantrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 217 | 176 200 216 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
| 218 | 217 | exp32 | ⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 219 | 218 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 220 | 68 219 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 221 | 220 | expcom | ⊢ ( ¬ 𝑐 ∈ 𝑏 → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 222 | 221 | adantl | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 223 | 222 | a2d | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 224 | 18 27 36 45 64 223 | findcard2s | ⊢ ( 𝐼 ∈ Fin → ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
| 225 | 5 224 | mpcom | ⊢ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
| 226 | 9 225 | mpi | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |