This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| letrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lelttrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| lelttrd.5 | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | ||
| Assertion | lelttrd | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | letrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lelttrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | lelttrd.5 | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | |
| 6 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 8 | 4 5 7 | mp2and | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) |