This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑃 𝐷 𝑥 ) = ( 𝑃 𝐷 𝐴 ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 𝐷 𝑥 ) < 𝑅 ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) |
| 5 | 4 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) |
| 6 | 2 5 | bitrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) |