This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the complex logarithm function on the open unit ball centered at 1 , a sometimes easier region to work with than the CC \ ( -oo , 0 ] of dvlog . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvlog2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| Assertion | dvlog2 | ⊢ ( ℂ D ( log ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlog2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 2 | ssid | ⊢ ℂ ⊆ ℂ | |
| 3 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 4 | f1of | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) | |
| 5 | 3 4 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 6 | logrncn | ⊢ ( 𝑥 ∈ ran log → 𝑥 ∈ ℂ ) | |
| 7 | 6 | ssriv | ⊢ ran log ⊆ ℂ |
| 8 | fss | ⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ ran log ⊆ ℂ ) → log : ( ℂ ∖ { 0 } ) ⟶ ℂ ) | |
| 9 | 5 7 8 | mp2an | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ℂ |
| 10 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 11 | 10 | logdmss | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 12 | fssres | ⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ ) | |
| 13 | 9 11 12 | mp2an | ⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ |
| 14 | difss | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ | |
| 15 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 1xr | ⊢ 1 ∈ ℝ* | |
| 18 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) | |
| 19 | 15 16 17 18 | mp3an | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 20 | 1 19 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 21 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 22 | 21 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 23 | 22 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 24 | 21 23 | dvres | ⊢ ( ( ( ℂ ⊆ ℂ ∧ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ ) ∧ ( ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) ) → ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) ) |
| 25 | 2 13 14 20 24 | mp4an | ⊢ ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) |
| 26 | 1 | dvlog2lem | ⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 27 | resabs1 | ⊢ ( 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) = ( log ↾ 𝑆 ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) = ( log ↾ 𝑆 ) |
| 29 | 28 | oveq2i | ⊢ ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ℂ D ( log ↾ 𝑆 ) ) |
| 30 | 10 | dvlog | ⊢ ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) |
| 31 | 21 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 32 | 21 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 33 | 32 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 34 | 15 16 17 33 | mp3an | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) |
| 35 | 1 34 | eqeltri | ⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |
| 36 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 ) | |
| 37 | 31 35 36 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 |
| 38 | 30 37 | reseq12i | ⊢ ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) = ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) |
| 39 | 25 29 38 | 3eqtr3i | ⊢ ( ℂ D ( log ↾ 𝑆 ) ) = ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) |
| 40 | resmpt | ⊢ ( 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) ) | |
| 41 | 26 40 | ax-mp | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) |
| 42 | 39 41 | eqtri | ⊢ ( ℂ D ( log ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) |