This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptid.1 | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptc.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| Assertion | dvmptc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptid.1 | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptc.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 3 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 4 | 3 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 5 | toponmax | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 7 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 9 | dfss2 | ⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 12 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 13 | dvconst | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) | |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 15 | fconstmpt | ⊢ ( ℂ × { 𝐴 } ) = ( 𝑥 ∈ ℂ ↦ 𝐴 ) | |
| 16 | 15 | oveq2i | ⊢ ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) |
| 17 | fconstmpt | ⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) | |
| 18 | 14 16 17 | 3eqtr3g | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 19 | 3 1 6 10 11 12 18 | dvmptres3 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |