This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptco.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptco.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | ||
| dvmptco.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
| dvmptco.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptco.c | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ ℂ ) | ||
| dvmptco.d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ 𝑊 ) | ||
| dvmptco.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptco.dc | ⊢ ( 𝜑 → ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) | ||
| dvmptco.e | ⊢ ( 𝑦 = 𝐴 → 𝐶 = 𝐸 ) | ||
| dvmptco.f | ⊢ ( 𝑦 = 𝐴 → 𝐷 = 𝐹 ) | ||
| Assertion | dvmptco | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptco.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptco.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | |
| 3 | dvmptco.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
| 4 | dvmptco.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | dvmptco.c | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ ℂ ) | |
| 6 | dvmptco.d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ 𝑊 ) | |
| 7 | dvmptco.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 8 | dvmptco.dc | ⊢ ( 𝜑 → ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) | |
| 9 | dvmptco.e | ⊢ ( 𝑦 = 𝐴 → 𝐶 = 𝐸 ) | |
| 10 | dvmptco.f | ⊢ ( 𝑦 = 𝐴 → 𝐷 = 𝐹 ) | |
| 11 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) : 𝑌 ⟶ ℂ ) |
| 12 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 13 | 8 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) |
| 14 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 𝐷 ∈ 𝑊 ) |
| 15 | dmmptg | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐷 ∈ 𝑊 → dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) = 𝑌 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) = 𝑌 ) |
| 17 | 13 16 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = 𝑌 ) |
| 18 | 7 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 19 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 20 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 22 | 18 21 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 23 | 2 1 11 12 17 22 | dvcof | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f · ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) |
| 24 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 25 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) | |
| 26 | 3 24 25 9 | fmptco | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) ) |
| 28 | ovex | ⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ V | |
| 29 | 28 | dmex | ⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ V |
| 30 | 22 29 | eqeltrrdi | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 31 | 2 5 6 8 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ ℂ ) |
| 32 | 8 31 | fmpt3d | ⊢ ( 𝜑 → ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) : 𝑌 ⟶ ℂ ) |
| 33 | fco | ⊢ ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) : 𝑌 ⟶ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) | |
| 34 | 32 12 33 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) |
| 35 | 3 24 8 10 | fmptco | ⊢ ( 𝜑 → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) ) |
| 36 | 35 | feq1d | ⊢ ( 𝜑 → ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 37 | 34 36 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 38 | 37 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
| 39 | 30 38 4 35 7 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f · ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · 𝐵 ) ) ) |
| 40 | 23 27 39 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · 𝐵 ) ) ) |