This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for -u log ( 1 - A ) , as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtaylsum | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 2 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) | |
| 3 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 4 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 5 | 3 4 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) | |
| 7 | ovex | ⊢ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
| 10 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 11 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 12 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 14 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 16 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 18 | 13 15 17 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ∈ ℂ ) |
| 19 | logtayl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) | |
| 20 | 1 2 9 18 19 | isumclim | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |