This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | cnre | ⊢ ( 1 ∈ ℂ → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 1 = ( 𝑎 + ( i · 𝑏 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 1 = ( 𝑎 + ( i · 𝑏 ) ) |
| 5 | neeq1 | ⊢ ( 1 = ( 𝑎 + ( i · 𝑏 ) ) → ( 1 ≠ 0 ↔ ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 ) ) | |
| 6 | 5 | biimpcd | ⊢ ( 1 ≠ 0 → ( 1 = ( 𝑎 + ( i · 𝑏 ) ) → ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 ) ) |
| 7 | 0cn | ⊢ 0 ∈ ℂ | |
| 8 | cnre | ⊢ ( 0 ∈ ℂ → ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ 0 = ( 𝑐 + ( i · 𝑑 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ 0 = ( 𝑐 + ( i · 𝑑 ) ) |
| 10 | neeq2 | ⊢ ( 0 = ( 𝑐 + ( i · 𝑑 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 ↔ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) | |
| 11 | 10 | biimpcd | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 → ( 0 = ( 𝑐 + ( i · 𝑑 ) ) → ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 12 | 11 | reximdv | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 → ( ∃ 𝑑 ∈ ℝ 0 = ( 𝑐 + ( i · 𝑑 ) ) → ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 13 | 12 | reximdv | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ 0 → ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ 0 = ( 𝑐 + ( i · 𝑑 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 14 | 6 9 13 | syl6mpi | ⊢ ( 1 ≠ 0 → ( 1 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 15 | 14 | reximdv | ⊢ ( 1 ≠ 0 → ( ∃ 𝑏 ∈ ℝ 1 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑏 ∈ ℝ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 16 | 15 | reximdv | ⊢ ( 1 ≠ 0 → ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 1 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 17 | 4 16 | mpi | ⊢ ( 1 ≠ 0 → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) ) |
| 18 | id | ⊢ ( 𝑎 = 𝑐 → 𝑎 = 𝑐 ) | |
| 19 | oveq2 | ⊢ ( 𝑏 = 𝑑 → ( i · 𝑏 ) = ( i · 𝑑 ) ) | |
| 20 | 18 19 | oveqan12d | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝑎 + ( i · 𝑏 ) ) = ( 𝑐 + ( i · 𝑑 ) ) ) |
| 21 | 20 | expcom | ⊢ ( 𝑏 = 𝑑 → ( 𝑎 = 𝑐 → ( 𝑎 + ( i · 𝑏 ) ) = ( 𝑐 + ( i · 𝑑 ) ) ) ) |
| 22 | 21 | necon3d | ⊢ ( 𝑏 = 𝑑 → ( ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → 𝑎 ≠ 𝑐 ) ) |
| 23 | 22 | com12 | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ( 𝑏 = 𝑑 → 𝑎 ≠ 𝑐 ) ) |
| 24 | 23 | necon3bd | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ( ¬ 𝑎 ≠ 𝑐 → 𝑏 ≠ 𝑑 ) ) |
| 25 | 24 | orrd | ⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ( 𝑎 ≠ 𝑐 ∨ 𝑏 ≠ 𝑑 ) ) |
| 26 | neeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ≠ 𝑦 ↔ 𝑎 ≠ 𝑦 ) ) | |
| 27 | neeq2 | ⊢ ( 𝑦 = 𝑐 → ( 𝑎 ≠ 𝑦 ↔ 𝑎 ≠ 𝑐 ) ) | |
| 28 | 26 27 | rspc2ev | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≠ 𝑐 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) |
| 29 | 28 | 3expia | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑎 ≠ 𝑐 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 30 | 29 | ad2ant2r | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑎 ≠ 𝑐 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 31 | neeq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ≠ 𝑦 ↔ 𝑏 ≠ 𝑦 ) ) | |
| 32 | neeq2 | ⊢ ( 𝑦 = 𝑑 → ( 𝑏 ≠ 𝑦 ↔ 𝑏 ≠ 𝑑 ) ) | |
| 33 | 31 32 | rspc2ev | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑏 ≠ 𝑑 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) |
| 34 | 33 | 3expia | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 𝑏 ≠ 𝑑 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 35 | 34 | ad2ant2l | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑏 ≠ 𝑑 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 36 | 30 35 | jaod | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( 𝑎 ≠ 𝑐 ∨ 𝑏 ≠ 𝑑 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 37 | 25 36 | syl5 | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 38 | 37 | rexlimdvva | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) ) |
| 39 | 38 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( 𝑎 + ( i · 𝑏 ) ) ≠ ( 𝑐 + ( i · 𝑑 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 ) |
| 40 | 1 17 39 | mp2b | ⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 |
| 41 | eqtr3 | ⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑥 = 𝑦 ) | |
| 42 | 41 | ex | ⊢ ( 𝑥 = 0 → ( 𝑦 = 0 → 𝑥 = 𝑦 ) ) |
| 43 | 42 | necon3d | ⊢ ( 𝑥 = 0 → ( 𝑥 ≠ 𝑦 → 𝑦 ≠ 0 ) ) |
| 44 | neeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≠ 0 ↔ 𝑦 ≠ 0 ) ) | |
| 45 | 44 | rspcev | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) |
| 46 | 45 | expcom | ⊢ ( 𝑦 ≠ 0 → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) |
| 47 | 43 46 | syl6 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≠ 𝑦 → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) ) |
| 48 | 47 | com23 | ⊢ ( 𝑥 = 0 → ( 𝑦 ∈ ℝ → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) ) |
| 49 | 48 | adantld | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) ) |
| 50 | neeq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≠ 0 ↔ 𝑥 ≠ 0 ) ) | |
| 51 | 50 | rspcev | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) |
| 52 | 51 | expcom | ⊢ ( 𝑥 ≠ 0 → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) |
| 53 | 52 | adantrd | ⊢ ( 𝑥 ≠ 0 → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) |
| 54 | 53 | a1dd | ⊢ ( 𝑥 ≠ 0 → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) ) |
| 55 | 49 54 | pm2.61ine | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) ) |
| 56 | 55 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 ) |
| 57 | ax-rrecex | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑧 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝑧 · 𝑥 ) = 1 ) | |
| 58 | remulcl | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑧 · 𝑥 ) ∈ ℝ ) | |
| 59 | 58 | adantlr | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑧 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑧 · 𝑥 ) ∈ ℝ ) |
| 60 | eleq1 | ⊢ ( ( 𝑧 · 𝑥 ) = 1 → ( ( 𝑧 · 𝑥 ) ∈ ℝ ↔ 1 ∈ ℝ ) ) | |
| 61 | 59 60 | syl5ibcom | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑧 ≠ 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑧 · 𝑥 ) = 1 → 1 ∈ ℝ ) ) |
| 62 | 61 | rexlimdva | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑧 ≠ 0 ) → ( ∃ 𝑥 ∈ ℝ ( 𝑧 · 𝑥 ) = 1 → 1 ∈ ℝ ) ) |
| 63 | 57 62 | mpd | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑧 ≠ 0 ) → 1 ∈ ℝ ) |
| 64 | 63 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ ℝ 𝑧 ≠ 0 → 1 ∈ ℝ ) |
| 65 | 40 56 64 | mp2b | ⊢ 1 ∈ ℝ |