This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logtayl . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtayllem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℕ0 ) |
| 4 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 5 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) | |
| 6 | ovex | ⊢ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V | |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 9 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 | reexpcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 12 | 10 11 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 13 | 8 12 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 14 | eqeq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 0 ↔ 𝑘 = 0 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 16 | 14 15 | ifbieq2d | ⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 19 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) | |
| 20 | ovex | ⊢ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ V | |
| 21 | 18 19 20 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 23 | 0cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) | |
| 24 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 26 | neqne | ⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) | |
| 27 | reccl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) | |
| 28 | 25 26 27 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 = 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 29 | 23 28 | ifclda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ∈ ℂ ) |
| 30 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 32 | 29 31 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 33 | 22 32 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 34 | 10 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 35 | absidm | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 37 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 38 | 36 37 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) < 1 ) |
| 39 | 34 38 8 | geolim | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) ) |
| 40 | seqex | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ V | |
| 41 | ovex | ⊢ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) ∈ V | |
| 42 | 40 41 | breldm | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐴 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 43 | 39 42 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 44 | 1red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℝ ) | |
| 45 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 46 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 47 | 46 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 48 | 47 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 49 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 50 | 49 31 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 51 | 48 50 | absmuld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 52 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 53 | 52 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 54 | 53 | rpreccld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 55 | 54 | rpge0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) ) |
| 56 | 47 55 | absidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
| 57 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 58 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 59 | 57 49 58 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 60 | 56 59 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( 1 / 𝑘 ) ) · ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 61 | 51 60 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 62 | 1red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) | |
| 63 | 49 12 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 64 | 50 | absge0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
| 65 | 64 59 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 66 | nnge1 | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) | |
| 67 | 66 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 ) |
| 68 | 0lt1 | ⊢ 0 < 1 | |
| 69 | 68 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 1 ) |
| 70 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 71 | 70 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 72 | nngt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) | |
| 73 | 72 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 74 | lerec | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) ) | |
| 75 | 62 69 71 73 74 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑘 ↔ ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) ) |
| 76 | 67 75 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ ( 1 / 1 ) ) |
| 77 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 78 | 76 77 | breqtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ≤ 1 ) |
| 79 | 47 62 63 65 78 | lemul1ad | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 80 | 61 79 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 81 | 49 22 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 82 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 83 | 82 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 84 | 83 | neneqd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ¬ 𝑘 = 0 ) |
| 85 | 84 | iffalsed | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = ( 1 / 𝑘 ) ) |
| 86 | 85 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 87 | 81 86 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 88 | 87 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 1 / 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 89 | 49 8 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 90 | 89 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 1 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 91 | 80 88 90 | 3brtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 92 | 45 91 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 93 | 1 3 13 33 43 44 92 | cvgcmpce | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |