This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point C in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dv11cn.x | ⊢ 𝑋 = ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) | |
| dv11cn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| dv11cn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | ||
| dv11cn.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dv11cn.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dv11cn.d | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = 𝑋 ) | ||
| dv11cn.e | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D 𝐺 ) ) | ||
| dv11cn.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| dv11cn.p | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) | ||
| Assertion | dv11cn | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dv11cn.x | ⊢ 𝑋 = ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) | |
| 2 | dv11cn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 3 | dv11cn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | |
| 4 | dv11cn.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 5 | dv11cn.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 6 | dv11cn.d | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = 𝑋 ) | |
| 7 | dv11cn.e | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D 𝐺 ) ) | |
| 8 | dv11cn.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | dv11cn.p | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 10 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 11 | 5 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 12 | 1 | ovexi | ⊢ 𝑋 ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 14 | inidm | ⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 | |
| 15 | 10 11 13 13 14 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) Fn 𝑋 ) |
| 16 | 0cn | ⊢ 0 ∈ ℂ | |
| 17 | fnconstg | ⊢ ( 0 ∈ ℂ → ( 𝑋 × { 0 } ) Fn 𝑋 ) | |
| 18 | 16 17 | mp1i | ⊢ ( 𝜑 → ( 𝑋 × { 0 } ) Fn 𝑋 ) |
| 19 | subcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
| 21 | 20 4 5 13 13 14 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℂ ) |
| 23 | 8 | anim1ci | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 24 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 25 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) | |
| 26 | 24 2 3 25 | mp3an2i | ⊢ ( 𝜑 → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) |
| 27 | 1 26 | eqsstrid | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 28 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 29 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 30 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 5 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 32 | 13 28 29 30 31 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝜑 → ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 34 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 36 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ∈ V ) | |
| 37 | 30 | oveq2d | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 | dvfcn | ⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ | |
| 39 | 6 | feq2d | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 40 | 38 39 | mpbii | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 41 | 40 | feqmptd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 42 | 37 41 | eqtr3d | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 43 | 31 | oveq2d | ⊢ ( 𝜑 → ( ℂ D 𝐺 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 44 | 7 41 43 | 3eqtr3rd | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 45 | 35 28 36 42 29 36 44 | dvmptsub | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 46 | 40 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 47 | 46 | subidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) = 0 ) |
| 48 | 47 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 49 | fconstmpt | ⊢ ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) | |
| 50 | 48 49 | eqtr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑋 × { 0 } ) ) |
| 51 | 33 45 50 | 3eqtrd | ⊢ ( 𝜑 → ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = ( 𝑋 × { 0 } ) ) |
| 52 | 51 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = dom ( 𝑋 × { 0 } ) ) |
| 53 | snnzg | ⊢ ( 0 ∈ ℂ → { 0 } ≠ ∅ ) | |
| 54 | dmxp | ⊢ ( { 0 } ≠ ∅ → dom ( 𝑋 × { 0 } ) = 𝑋 ) | |
| 55 | 16 53 54 | mp2b | ⊢ dom ( 𝑋 × { 0 } ) = 𝑋 |
| 56 | 52 55 | eqtrdi | ⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = 𝑋 ) |
| 57 | eqimss2 | ⊢ ( dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = 𝑋 → 𝑋 ⊆ dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ) |
| 59 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 60 | 51 | fveq1d | ⊢ ( 𝜑 → ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) = ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) ) |
| 61 | c0ex | ⊢ 0 ∈ V | |
| 62 | 61 | fvconst2 | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 63 | 60 62 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) = 0 ) |
| 64 | 63 | abs00bd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) ) = 0 ) |
| 65 | 0le0 | ⊢ 0 ≤ 0 | |
| 66 | 64 65 | eqbrtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) ) ≤ 0 ) |
| 67 | 27 21 2 3 1 58 59 66 | dvlipcn | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) ) |
| 68 | 23 67 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) ) |
| 69 | 32 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) ) |
| 70 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 71 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 72 | 70 71 | oveq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
| 73 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) | |
| 74 | ovex | ⊢ ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ V | |
| 75 | 72 73 74 | fvmpt | ⊢ ( 𝐶 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
| 76 | 8 75 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
| 77 | 4 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 78 | 77 9 | subeq0bd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ) |
| 79 | 69 76 78 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = 0 ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = 0 ) |
| 81 | 80 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − 0 ) ) |
| 82 | 22 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − 0 ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
| 83 | 81 82 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
| 84 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) = ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) |
| 85 | 27 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
| 86 | 27 8 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 88 | 85 87 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 − 𝐶 ) ∈ ℂ ) |
| 89 | 88 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝑥 − 𝐶 ) ) ∈ ℝ ) |
| 90 | 89 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝑥 − 𝐶 ) ) ∈ ℂ ) |
| 91 | 90 | mul02d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) = 0 ) |
| 92 | 68 84 91 | 3brtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 93 | 22 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) |
| 94 | 22 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 95 | 0re | ⊢ 0 ∈ ℝ | |
| 96 | letri3 | ⊢ ( ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) ) ) | |
| 97 | 94 95 96 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 98 | 92 93 97 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
| 99 | 22 98 | abs00d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = 0 ) |
| 100 | 62 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 101 | 99 100 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) ) |
| 102 | 15 18 101 | eqfnfvd | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ) |
| 103 | ofsubeq0 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑋 ⟶ ℂ ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) | |
| 104 | 12 4 5 103 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) |
| 105 | 102 104 | mpbid | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |