This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | ||
| pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | ||
| Assertion | pserdv2 | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | psercn.s | ⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 6 | psercn.m | ⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) | |
| 7 | pserdv.b | ⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) | |
| 8 | 1 2 3 4 5 6 7 | pserdv | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 11 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 12 | 11 | fveq2i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 13 | 10 12 | eqtri | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 14 | id | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → 𝑘 = ( 1 + 𝑚 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) = ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑘 − 1 ) = ( ( 1 + 𝑚 ) − 1 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
| 19 | 16 18 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) ) |
| 20 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ ℤ ) | |
| 21 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 22 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 24 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 25 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 26 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) | |
| 27 | 24 25 26 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 28 | 23 27 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 29 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 30 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 31 | 30 | fdmi | ⊢ dom abs = ℂ |
| 32 | 29 31 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
| 33 | 5 32 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 34 | 33 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 35 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 36 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
| 37 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 39 | 28 38 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 40 | 9 13 19 20 21 39 | isumshft | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑚 ∈ ℕ0 ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) ) |
| 41 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 42 | nn0cn | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 44 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 1 + 𝑚 ) = ( 𝑚 + 1 ) ) | |
| 45 | 41 43 44 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 1 + 𝑚 ) = ( 𝑚 + 1 ) ) |
| 46 | 45 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ ( 1 + 𝑚 ) ) = ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) |
| 47 | 45 46 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) = ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) |
| 48 | pncan2 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) | |
| 49 | 41 43 48 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
| 50 | 49 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = ( 𝑦 ↑ 𝑚 ) ) |
| 51 | 47 50 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) = ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) |
| 52 | 51 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) = Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) |
| 53 | 40 52 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) |
| 54 | 53 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 55 | 8 54 | eqtrd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |