This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for .+ ) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 + 𝑥 ) = 𝑥 ) | |
| seqid.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | ||
| seqid.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqid.4 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ 𝑆 ) | ||
| seqid.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | ||
| Assertion | seqid | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 + 𝑥 ) = 𝑥 ) | |
| 2 | seqid.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | |
| 3 | seqid.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | seqid.4 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ 𝑆 ) | |
| 5 | seqid.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | |
| 6 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 7 | seq1 | ⊢ ( 𝑁 ∈ ℤ → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 8 | 3 6 7 | 3syl | ⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 9 | seqeq1 | ⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) | |
| 10 | 9 | fveq1d | ⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑁 = 𝑀 → ( ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
| 12 | 8 11 | syl5ibcom | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
| 13 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 15 | seqm1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) ) | |
| 16 | 14 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝑍 → ( 𝑍 + 𝑥 ) = ( 𝑍 + 𝑍 ) ) | |
| 18 | id | ⊢ ( 𝑥 = 𝑍 → 𝑥 = 𝑍 ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥 = 𝑍 → ( ( 𝑍 + 𝑥 ) = 𝑥 ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) ) |
| 20 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑥 ) |
| 21 | 19 20 2 | rspcdva | ⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 23 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 24 | 14 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 25 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 26 | 22 24 25 | seqid3 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) = 𝑍 ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) = ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → ( 𝑍 + 𝑥 ) = ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) ) | |
| 29 | id | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → 𝑥 = ( 𝐹 ‘ 𝑁 ) ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → ( ( 𝑍 + 𝑥 ) = 𝑥 ↔ ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) ) |
| 31 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑥 ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑁 ) ∈ 𝑆 ) |
| 33 | 30 31 32 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
| 34 | 16 27 33 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 35 | 34 | ex | ⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
| 36 | uzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 37 | 3 36 | syl | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 38 | 12 35 37 | mpjaod | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 39 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 40 | 3 38 39 | seqfeq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |