This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumshft.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumshft.2 | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | ||
| isumshft.3 | ⊢ ( 𝑗 = ( 𝐾 + 𝑘 ) → 𝐴 = 𝐵 ) | ||
| isumshft.4 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| isumshft.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumshft.6 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) | ||
| Assertion | isumshft | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑊 𝐴 = Σ 𝑘 ∈ 𝑍 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumshft.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumshft.2 | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | |
| 3 | isumshft.3 | ⊢ ( 𝑗 = ( 𝐾 + 𝑘 ) → 𝐴 = 𝐵 ) | |
| 4 | isumshft.4 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 5 | isumshft.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 6 | isumshft.6 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) | |
| 7 | 5 4 | zaddcld | ⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 8 | 2 | eleq2i | ⊢ ( 𝑚 ∈ 𝑊 ↔ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 9 | 4 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 10 | eluzelcn | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → 𝑚 ∈ ℂ ) | |
| 11 | 10 2 | eleq2s | ⊢ ( 𝑚 ∈ 𝑊 → 𝑚 ∈ ℂ ) |
| 12 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 13 | 12 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ V |
| 14 | 13 | shftval | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) |
| 15 | 9 11 14 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 17 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) | |
| 18 | 17 | fvmpt2i | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
| 20 | eluzelcn | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℂ ) | |
| 21 | 20 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
| 22 | addcom | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) | |
| 23 | 9 21 22 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
| 24 | id | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍 ) | |
| 25 | 24 1 | eleqtrdi | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 26 | eluzadd | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑘 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 27 | 25 4 26 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 28 | 23 27 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 29 | 28 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) ∈ 𝑊 ) |
| 30 | eqid | ⊢ ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) = ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) | |
| 31 | 3 30 | fvmpti | ⊢ ( ( 𝐾 + 𝑘 ) ∈ 𝑊 → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( I ‘ 𝐵 ) ) |
| 32 | 29 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( I ‘ 𝐵 ) ) |
| 33 | 19 32 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 35 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) | |
| 36 | 35 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) |
| 37 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 38 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐾 + 𝑘 ) = ( 𝐾 + 𝑛 ) ) | |
| 39 | 38 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
| 40 | 37 39 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) ) |
| 41 | 36 40 | rspc | ⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) ) |
| 42 | 34 41 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
| 44 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
| 45 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
| 46 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ 𝑊 ) | |
| 47 | 46 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 48 | eluzsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑚 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 49 | 44 45 47 48 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝑚 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 50 | 49 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝑚 − 𝐾 ) ∈ 𝑍 ) |
| 51 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) | |
| 52 | oveq2 | ⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( 𝐾 + 𝑛 ) = ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) | |
| 53 | 52 | fveq2d | ⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
| 54 | 51 53 | eqeq12d | ⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) ) |
| 55 | 54 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∧ ( 𝑚 − 𝐾 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
| 56 | 43 50 55 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
| 57 | pncan3 | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝐾 + ( 𝑚 − 𝐾 ) ) = 𝑚 ) | |
| 58 | 9 11 57 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐾 + ( 𝑚 − 𝐾 ) ) = 𝑚 ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 60 | 15 56 59 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) ) |
| 61 | 8 60 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) ) |
| 62 | 7 61 | seqfeq | ⊢ ( 𝜑 → seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) = seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ) |
| 63 | 62 | breq1d | ⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
| 64 | 13 | isershft | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
| 65 | 5 4 64 | syl2anc | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
| 66 | 63 65 | bitr4d | ⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) ) |
| 67 | 66 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) ) |
| 68 | df-fv | ⊢ ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) = ( ℩ 𝑥 seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ) | |
| 69 | df-fv | ⊢ ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) | |
| 70 | 67 68 69 | 3eqtr4g | ⊢ ( 𝜑 → ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 71 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ) | |
| 72 | 6 | fmpttd | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) : 𝑊 ⟶ ℂ ) |
| 73 | 72 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 74 | 2 7 71 73 | isum | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) ) |
| 75 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 76 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐾 + 𝑘 ) ∈ 𝑊 ) |
| 77 | 38 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐾 + 𝑘 ) ∈ 𝑊 ↔ ( 𝐾 + 𝑛 ) ∈ 𝑊 ) ) |
| 78 | 77 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐾 + 𝑘 ) ∈ 𝑊 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐾 + 𝑛 ) ∈ 𝑊 ) |
| 79 | 76 78 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐾 + 𝑛 ) ∈ 𝑊 ) |
| 80 | ffvelcdm | ⊢ ( ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) : 𝑊 ⟶ ℂ ∧ ( 𝐾 + 𝑛 ) ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∈ ℂ ) | |
| 81 | 72 79 80 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∈ ℂ ) |
| 82 | 42 81 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ∈ ℂ ) |
| 83 | 1 5 75 82 | isum | ⊢ ( 𝜑 → Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 84 | 70 74 83 | 3eqtr4d | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 85 | sumfc | ⊢ Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑗 ∈ 𝑊 𝐴 | |
| 86 | sumfc | ⊢ Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = Σ 𝑘 ∈ 𝑍 𝐵 | |
| 87 | 84 85 86 | 3eqtr3g | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑊 𝐴 = Σ 𝑘 ∈ 𝑍 𝐵 ) |