This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumz | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | c0ex | ⊢ 0 ∈ V | |
| 5 | 4 | fvconst2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 6 | ifid | ⊢ if ( 𝑘 ∈ 𝐴 , 0 , 0 ) = 0 | |
| 7 | 5 6 | eqtr4di | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 0 , 0 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 0 , 0 ) ) |
| 9 | 0cnd | ⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) | |
| 10 | 1 2 3 8 9 | zsum | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) ) |
| 11 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 12 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 13 | 11 12 | ax-mp | ⊢ Fun ⇝ |
| 14 | serclim0 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
| 16 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 → ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) = 0 ) ) | |
| 17 | 13 15 16 | mpsyl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → ( ⇝ ‘ seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ) = 0 ) |
| 18 | 10 17 | eqtrd | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 19 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 20 | 19 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 21 | 20 | eleq2i | ⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
| 22 | ndmfv | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) | |
| 23 | 21 22 | sylnbir | ⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 24 | 23 | sseq2d | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ 𝐴 ⊆ ∅ ) ) |
| 25 | 24 | biimpac | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
| 26 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 27 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 0 = Σ 𝑘 ∈ ∅ 0 ) | |
| 28 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 0 = 0 | |
| 29 | 27 28 | eqtrdi | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 30 | 25 26 29 | 3syl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 31 | 18 30 | pm2.61dan | ⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 32 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 33 | eqidd | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → 0 = 0 ) | |
| 34 | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 35 | simpr | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 36 | 0cnd | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) | |
| 37 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) | |
| 38 | 4 | fvconst2 | ⊢ ( 𝑛 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 39 | 37 38 | syl | ⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 40 | 39 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 41 | 33 34 35 36 40 | fsum | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 42 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 43 | 42 | ser0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 0 ) |
| 44 | 43 | adantr | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( + , ( ℕ × { 0 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 0 ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 46 | 45 | ex | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 47 | 46 | exlimdv | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 48 | 47 | imp | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 49 | 29 48 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 50 | 32 49 | syl | ⊢ ( 𝐴 ∈ Fin → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 51 | 31 50 | jaoi | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |