This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvlog2 . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvlog2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| Assertion | dvlog2lem | ⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlog2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 2 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | 1xr | ⊢ 1 ∈ ℝ* | |
| 5 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) | |
| 6 | 2 3 4 5 | mp3an | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 7 | 1 6 | eqsstri | ⊢ 𝑆 ⊆ ℂ |
| 8 | 7 | sseli | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ℂ ) |
| 9 | 1red | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 1 ∈ ℝ ) | |
| 10 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 11 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | iocssre | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( -∞ (,] 0 ) ⊆ ℝ ) | |
| 14 | 11 12 13 | mp2an | ⊢ ( -∞ (,] 0 ) ⊆ ℝ |
| 15 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 16 | 14 15 | sstri | ⊢ ( -∞ (,] 0 ) ⊆ ℂ |
| 17 | 16 | sseli | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 𝑥 ∈ ℂ ) |
| 18 | metcl | ⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝑥 ) ∈ ℝ ) | |
| 19 | 10 3 17 18 | mp3an12i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( 1 ( abs ∘ − ) 𝑥 ) ∈ ℝ ) |
| 20 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 21 | 14 | sseli | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 𝑥 ∈ ℝ ) |
| 22 | 12 | a1i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 0 ∈ ℝ ) |
| 23 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( 𝑥 ∈ ( -∞ (,] 0 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ 0 ) ) ) | |
| 24 | 11 12 23 | mp2an | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ 0 ) ) |
| 25 | 24 | simp3bi | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 𝑥 ≤ 0 ) |
| 26 | 21 22 9 25 | lesub2dd | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( 1 − 0 ) ≤ ( 1 − 𝑥 ) ) |
| 27 | 20 26 | eqbrtrrid | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 1 ≤ ( 1 − 𝑥 ) ) |
| 28 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 29 | 28 | cnmetdval | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 1 − 𝑥 ) ) ) |
| 30 | 3 17 29 | sylancr | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( 1 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 1 − 𝑥 ) ) ) |
| 31 | 0le1 | ⊢ 0 ≤ 1 | |
| 32 | 31 | a1i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 0 ≤ 1 ) |
| 33 | 21 22 9 25 32 | letrd | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 𝑥 ≤ 1 ) |
| 34 | 21 9 33 | abssubge0d | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( abs ‘ ( 1 − 𝑥 ) ) = ( 1 − 𝑥 ) ) |
| 35 | 30 34 | eqtrd | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( 1 ( abs ∘ − ) 𝑥 ) = ( 1 − 𝑥 ) ) |
| 36 | 27 35 | breqtrrd | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 1 ≤ ( 1 ( abs ∘ − ) 𝑥 ) ) |
| 37 | 9 19 36 | lensymd | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ¬ ( 1 ( abs ∘ − ) 𝑥 ) < 1 ) |
| 38 | 2 | a1i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 39 | 4 | a1i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 1 ∈ ℝ* ) |
| 40 | 3 | a1i | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → 1 ∈ ℂ ) |
| 41 | elbl2 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) 𝑥 ) < 1 ) ) | |
| 42 | 38 39 40 17 41 | syl22anc | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) 𝑥 ) < 1 ) ) |
| 43 | 37 42 | mtbird | ⊢ ( 𝑥 ∈ ( -∞ (,] 0 ) → ¬ 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 44 | 43 | con2i | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ¬ 𝑥 ∈ ( -∞ (,] 0 ) ) |
| 45 | 44 1 | eleq2s | ⊢ ( 𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ ( -∞ (,] 0 ) ) |
| 46 | 8 45 | eldifd | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 47 | 46 | ssriv | ⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |